## Simulating data
simul <- rboxcox(100, lambda=0.5, mean=10, sd=2)
## Finding the ML estimates
ml <- boxcox.fit(simul)
ml
## Ploting histogram and fitted model
plot(ml)
##
## Comparing models with different lambdas,
## zero means and unit variances
curve(dboxcox(x, lambda=-1), 0, 8)
for(lambda in seq(-.5, 1.5, by=0.5))
curve(dboxcox(x, lambda), 0, 8, add = TRUE)
##
## Another example, now estimating lambda2
##
simul <- rboxcox(100, lambda=0.5, mean=10, sd=2)
ml <- boxcox.fit(simul, lambda2 = TRUE)
ml
plot(ml)
##
## An example with a regression model
##
if(require(MASS)){
data(trees)
boxcox.fit(data = trees[,3], xmat = trees[,1:2])
}
Run the code above in your browser using DataLab