Learn R Programming

geoR (version 1.9-4)

lines.variomodel: Adds a Line with a Variogram Model to a Variogram Plot

Description

This function adds a line with a variogram model specifyed by the user to a current variogram plot. The variogram is specifyed either by passing a list with values for the variogram elements or using each argument in the function.

Usage

# S3 method for variomodel
lines(x, ...)
# S3 method for default
lines.variomodel(x, cov.model, cov.pars, nugget, kappa,
                          max.dist, scaled = FALSE, ...)

Value

A line with a variogram model is added to a plot on the current graphics device. No values are returned.

Arguments

x

a list with the values for the following components: cov.model, cov.pars, nugget, kappa , max.dist; or a numeric vector with values for x-axis values for the variogram (distances). This argument is not required if the other arguments in the function are provided, otherwise is compulsory. If a list is provided the arguments which match the list elements are ignored.

cov.model

a string with the type of the variogram function. See documentation of cov.spatial for further details.

cov.pars

a vector or matrix with the values for the partial sill (\(\sigma^2\)) and range (\(\phi\)) parameters.

nugget

a scalar with the value of the nugget (\(\tau^2\)) parameter.

kappa

a scalar with the value of the smoothness (\(\kappa\)) parameters. Only required if cov.model is one of the following: "matern", "powered.exponential", "cauchy" and "gneiting.matern"

max.dist

maximum distance (x-axis) to compute and draw the line representing the variogram model. If a list is provided in x the default is the distance given by x$max.dist. If a vector is provided in x it takes max(x).

scaled

logical. If TRUE the total sill in the plot is equals to \(1\).

...

arguments to be passed to the function curve.

Author

Paulo Justiniano Ribeiro Jr. paulojus@leg.ufpr.br,
Peter J. Diggle p.diggle@lancaster.ac.uk.

Details

Adds a line with a variogram model to a plot. In conjuction with plot.variogram can be used for instance to compare sample variograms against fitted models returned by variofit and/or likfit.

References

Further information on the package geoR can be found at:
http://www.leg.ufpr.br/geoR/.

See Also

lines.variomodel.krige.bayes, lines.variomodel.grf, lines.variomodel.variofit, lines.variomodel.likGRF, plot.variogram, lines.variogram, variofit, likfit, curve.

Examples

Run this code
# computing and ploting empirical variogram
vario <- variog(s100, max.dist = 1)
plot(vario)
# estimating parameters by weighted least squares
vario.wls <- variofit(vario, ini = c(1, .3), fix.nugget = TRUE)
# adding fitted model to the plot  
lines(vario.wls)
#
# Ploting different variogram models
plot(0:1, 0:1, type="n")
lines.variomodel(cov.model = "exp", cov.pars = c(.7, .25), nug = 0.3, max.dist = 1) 
# an alternative way to do this is:
my.model <- list(cov.model = "exp", cov.pars = c(.7, .25), nugget = 0.3,
max.dist = 1) 
lines.variomodel(my.model, lwd = 2)
# now adding another model
lines.variomodel(cov.m = "mat", cov.p = c(.7, .25), nug = 0.3,
                 max.dist = 1, kappa = 1, lty = 2)
# adding the so-called "nested" models
# two exponential structures
lines.variomodel(seq(0,1,l=101), cov.model="exp",
                 cov.pars=rbind(c(0.6,0.15),c(0.4,0.25)), nug=0, col=2)
## exponential and spherical structures
lines.variomodel(seq(0,1,l=101), cov.model=c("exp", "sph"),
                 cov.pars=rbind(c(0.6,0.15), c(0.4,0.75)), nug=0, col=3)

Run the code above in your browser using DataLab