Learn R Programming

geoRglm (version 0.9-16)

prior.glm.control: Defines prior options

Description

This auxiliary function defines prior options for pois.krige.bayes and binom.krige.bayes.

Usage

prior.glm.control(beta.prior = c("flat", "normal", "fixed"),
              beta = NULL, beta.var.std = NULL,
              sigmasq.prior = c("uniform", "sc.inv.chisq", "reciprocal", "fixed"),
              sigmasq = NULL, df.sigmasq = NULL,
              phi.prior = c("uniform", "exponential","fixed",
                            "squared.reciprocal", "reciprocal"),
              phi = NULL, phi.discrete = NULL,
              tausq.rel = 0)

Arguments

beta.prior

prior distribution for the mean (vector) parameter \(\beta\). The options are "flat" (default), "normal" or "fixed".

beta

hyper-parameter for the prior distribution of the mean (vector) parameter \(\beta\). Only used if beta.prior = "normal" or beta.prior = "fixed". For the latter beta defines the value of the known mean.

beta.var.std

standardised (co)variance hyperparameter(s) for the prior for the mean (vector) parameter beta. The (co)variance matrix for beta is given by the multiplication of this matrix by \(sigma^2\). Only used if 'beta.prior = "normal"'.

sigmasq.prior

prior distribution for the parameter \(\sigma^2\). The options are "uniform" (default), "sc.inv.chisq", "reciprocal" (gives improper posterior), or "fixed".

sigmasq

fixed value of the parameter \(\sigma^2\) when sigmasq.prior = "fixed". Parameter \(S^2_{\sigma}\) in the scaled inverse-\(\chi^2\) prior distribution for \(\sigma^2\).

df.sigmasq

parameter \(n_{\sigma}\) in the scaled inverse-\(\chi^2\) prior distribution for \(\sigma^2\).

phi.prior

prior distribution for the range parameter \(\phi\). Options are: "uniform" (\(\propto 1\)), "exponential" (\(\exp(-\nu * \phi)\)), "fixed" (known value of \(\phi\)), "squared.reciprocal" (\(1/\phi^2\)), "reciprocal" (\(1/\phi\)). Alternativelly, a user defined discrete distribution can be specified by providing a vector of probabilities. These probabilities corrresponds to a prior distribution with support phi.discrete. If the "fixed" the argument \(\phi\) should be provided and it is regarded as fixed when performing predictions.

phi

fixed value of the parameter \(\phi\) when phi.prior = "fixed". Mean of the prior distribution when phi.prior = "exponential".

phi.discrete

support points for the discretisation of the prior for the parameter \(\phi\).

tausq.rel

the value of the relative nugget parameter \(\tau_R^2\). Default is tausq.rel = 0.

Value

A list with processed arguments to be passed to the main function.

See Also

pois.krige.bayes and binom.krige.bayes.