Learn R Programming

geosphere (version 1.5-20)

destPoint: Destination given bearing (direction) and distance

Description

Given a start point, initial bearing (direction), and distance, this function computes the destination point travelling along a the shortest path on an ellipsoid (the geodesic).

Usage

destPoint(p, b, d, a=6378137, f=1/298.257223563, ...)

Value

A pair of coordinates (longitude/latitude)

Arguments

p

Longitude and Latitude of point(s), in degrees. Can be a vector of two numbers, a matrix of 2 columns (first one is longitude, second is latitude) or a SpatialPoints* object

b

numeric. Bearing (direction) in degrees

d

numeric. Distance in meters

a

major (equatorial) radius of the ellipsoid. The default value is for WGS84

f

ellipsoid flattening. The default value is for WGS84

...

additional arguments. If an argument 'r' is supplied, this is taken as the radius of the earth (e.g. 6378137 m) and computations are for a sphere (great circle) instead of an ellipsoid (geodetic). This is for backwards compatibility only

Author

This function calls GeographicLib code by C.F.F. Karney

References

C.F.F. Karney, 2013. Algorithms for geodesics, J. Geodesy 87: 43-55. tools:::Rd_expr_doi("10.1007/s00190-012-0578-z"). Addenda: https://geographiclib.sourceforge.io/geod-addenda.html. Also see https://geographiclib.sourceforge.io/

Examples

Run this code
p <- cbind(5,52)
d <- destPoint(p,30,10000)
d

#final direction, when arriving at endpoint: 
finalBearing(d, p)

Run the code above in your browser using DataLab