Learn R Programming

geostatsp (version 2.0.8)

Geostatistical Modelling with Likelihood and Bayes

Description

Geostatistical modelling facilities using 'SpatRaster' and 'SpatVector' objects are provided. Non-Gaussian models are fit using 'INLA', and Gaussian geostatistical models use Maximum Likelihood Estimation. For details see Brown (2015) . The 'RandomFields' package is available at .

Copy Link

Version

Install

install.packages('geostatsp')

Monthly Downloads

701

Version

2.0.8

License

GPL

Maintainer

Patrick Brown

Last Published

February 7th, 2025

Functions in geostatsp (2.0.8)

profLlgm

Joint confidence regions
postExp

Exponentiate posterior quantiles
rongelapUTM

Rongelap data
simLgcp

Simulate a log-Gaussian Cox process
squareRaster-methods

Create a raster with square cells
pcPriorRange

PC prior for range parameter
matern

Evaluate the Matern correlation function
murder

Murder locations
spatialRoc

Sensitivity and specificity
stackRasterList

Converts a list of rasters, possibly with different projections and resolutions, to a single raster stack.
variog

Compute Empirical Variograms and Permutation Envelopes
maternGmrfPrec

Precision matrix for a Matern spatial correlation
swissRainR

Raster of Swiss rain data
swissRain

Swiss rainfall data
wheat

Mercer and Hall wheat yield data
likfitLgm

Likelihood Based Parameter Estimation for Gaussian Random Fields
krigeLgm

Spatial prediction, or Kriging
inla.models

Valid models in INLA
lgm-methods

Linear Geostatistical Models
loaloa

Loaloa prevalence data from 197 village surveys
RFsimulate

Simulation of Random Fields
glgm-methods

Generalized Linear Geostatistical Models
excProb

Exceedance probabilities
conditionalGmrf

Conditional distribution of GMRF
gambiaUTM

Gambia data