##step indicator saturation:
set.seed(123)
y <- rnorm(30)
isatmod <- isat(y)
##print results:
print(isatmod)
##plot the fitted vs. actual values, and the residuals:
plot(isatmod)
##print the entries of object 'isatmod':
summary(isatmod)
##extract coefficients of the simplified (specific) model:
coef(isatmod)
##extract log-likelihood:
logLik(isatmod)
##extract the coefficient-covariance matrix of simplified
##(specific) model:
vcov(isatmod)
##extract and plot the fitted values:
mfit <- fitted(isatmod)
plot(mfit)
##extract and plot (mean) residuals:
epshat <- residuals(isatmod)
plot(epshat)
##extract and plot standardised residuals:
zhat <- residuals(isatmod, std=TRUE)
plot(zhat)
##generate forecasts of the simplified (specific) model:
predict(isatmod, newmxreg=matrix(1,12,1), plot=TRUE)
Run the code above in your browser using DataLab