Learn R Programming

gets (version 0.38)

distorttest: Jiao-Pretis-Schwarz Outlier Distortion Test

Description

Implements the Jiao-Pretis-Schwarz test for coefficient distortion due to outliers by comparing coefficient estimates obtained using OLS to estimates obtained using the robust IIS estimator implemented using isat. See the referenced Jiao-Pretis-Schwarz Paper below for more information.

Usage

distorttest(x, coef = "all")

Value

Object of class isat

Arguments

x

object of class isat

coef

Either "all" (Default) to test the distortion on all coefficients or a character vector of explanatory variable names.

References

Xiyu Jiao, Felix Pretis,and Moritz Schwarz. Testing for Coefficient Distortion due to Outliers with an Application to the Economic Impacts of Climate Change. Available at SSRN: https://www.ssrn.com/abstract=3915040 or tools:::Rd_expr_doi("10.2139/ssrn.3915040")

See Also

isat, distorttestboot

Examples

Run this code
if (FALSE) {  
data(Nile)
nile <- isat(Nile, sis=FALSE, iis=TRUE, plot=TRUE, t.pval=0.01)
distorttest(nile)

data("hpdata")
# Another example with co-variates
dat <- hpdata[,c("GD", "GNPQ", "FSDJ")]
Y <- ts(dat$GD,start = 1959, frequency = 4)
mxreg <- ts(dat[,c("GNPQ","FSDJ")],start = 1959, frequency = 4)
m1 <- isat(y = Y, mc = TRUE, sis = FALSE, iis = TRUE)
m2 <- isat(y = Y, mc = TRUE, sis = FALSE, iis = TRUE, ar = 1)
m3 <- isat(y = Y, mxreg = mxreg, mc = TRUE, sis = FALSE, iis = TRUE)
m4 <- isat(y = Y, mxreg = mxreg, mc = TRUE, sis = FALSE, iis = TRUE, ar = 1, t.pval = 0.01)
distorttest(m1, coef = "all")
distorttest(m2, coef = "all")
distorttest(m3, coef = "GNPQ")
distorttest(m4, coef = c("ar1", "FSDJ"))
 } 

Run the code above in your browser using DataLab