# NOT RUN {
#############################################
# Example 1: Charts other than "p" or "u" #
#############################################
# Load Libraries ----------------------------------------------------------
require(ggQC)
require(plyr)
require(ggplot2)
# Setup Data --------------------------------------------------------------
set.seed(5555)
Process1 <- data.frame(processID = as.factor(rep(1,100)),
metric_value = rnorm(100,0,1),
subgroup_sample=rep(1:20, each=5),
Process_run_id = 1:100)
set.seed(5555)
Process2 <- data.frame(processID = as.factor(rep(2,100)),
metric_value = rnorm(100,5, 1),
subgroup_sample=rep(1:10, each=10),
Process_run_id = 101:200)
Both_Processes <- rbind(Process1, Process2)
# QC Values For Individuals -----------------------------------------------
# All Together
QC_Lines(data = Both_Processes$metric_value, method = "XmR")
# For Each Process
ddply(Both_Processes, .variables = "processID",
.fun =function(df){
QC_Lines(data = df$metric_value, method = "XmR")
}
)
# QC Values For Studentized Runs-------------------------------------------
# All Together
QC_Lines(data = Both_Processes,
formula = metric_value ~ subgroup_sample)
# For Each Process
ddply(Both_Processes, .variables = "processID",
.fun =function(df){
QC_Lines(data = df, formula = metric_value ~ subgroup_sample)
}
)
########################
# Example 2 "p" data #
########################
# Setup p Data ------------------------------------------------------------
set.seed(5555)
bin_data <- data.frame(
trial = 1:30,
Num_Incomplete_Items = rpois(n = 30, lambda = 30),
Num_Items_in_Set = runif(n = 30, min = 50, max = 100))
bin_data$Proportion_Incomplete <- bin_data$Num_Incomplete_Items/bin_data$Num_Items_in_Set
# QC_Lines for "p" data ---------------------------------------------------
QC_Lines(data = bin_data$Proportion_Incomplete,
n = bin_data$Num_Items_in_Set, method="p")
########################
# Example 3 "u" data #
########################
# Setup u Data ------------------------------------------------------------
set.seed(5555)
bin_data <- data.frame(
trial=1:30,
Num_of_Blemishes = rpois(n = 30, lambda = 30),
Num_Items_Inspected = runif(n = 30, min = 50, max = 100))
bin_data$Blemish_Rate <- bin_data$Num_of_Blemishes/bin_data$Num_Items_Inspected
# QC Lines for "u" data ---------------------------------------------------
QC_Lines(data = bin_data$Blemish_Rate,
n = bin_data$Num_Items_Inspected, method="u")
# }
Run the code above in your browser using DataLab