## Not run:
# # Load the forest
# data(rfsrc_pbc, package="ggRandomForests")
#
# # Create the variable plot.
# ggvar <- gg_variable(rfsrc_pbc, time = 1)
#
# # Find intervals with similar number of observations.
# copper_cts <-quantile_pts(ggvar$copper, groups = 6, intervals = TRUE)
#
# # Create the conditional groups and add to the gg_variable object
# copper_grp <- cut(ggvar$copper, breaks = copper_cts)
# ## End(Not run)
## Not run:
# ## We would run this, but it's expensive
# partial_coplot_pbc <- gg_partial_coplot(rfsrc_pbc, xvar = "bili",
# groups = copper_grp,
# surv_type = "surv",
# time = 1,
# show.plots = FALSE)
# ## End(Not run)
## Not run:
# ## so load the cached set
# data(partial_coplot_pbc, package="ggRandomForests")
#
# # Partial coplot
# plot(partial_coplot_pbc) #, se = FALSE)
# ## End(Not run)
Run the code above in your browser using DataLab