## ------------------------------------------------------------
## classification example
## ------------------------------------------------------------
## -------- iris data
rfsrc_iris <- rfsrc(Species ~ ., data = iris)
#data(rfsrc_iris, package="ggRandomForests")
gg_dta<- gg_rfsrc(rfsrc_iris)
plot(gg_dta)
## ------------------------------------------------------------
## Regression example
## ------------------------------------------------------------
## Not run:
# ## -------- air quality data
# # rfsrc_airq <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute")
# data(rfsrc_airq, package="ggRandomForests")
# gg_dta<- gg_rfsrc(rfsrc_airq)
#
# plot(gg_dta)
# ## End(Not run)
## Not run:
# ## -------- Boston data
# data(rfsrc_Boston, package="ggRandomForests")
# plot(rfsrc_Boston)
# ## End(Not run)
## Not run:
# ## -------- mtcars data
# data(rfsrc_mtcars, package="ggRandomForests")
# gg_dta<- gg_rfsrc(rfsrc_mtcars)
#
# plot(gg_dta)
# ## End(Not run)
## ------------------------------------------------------------
## Survival example
## ------------------------------------------------------------
## Not run:
# ## -------- veteran data
# ## randomized trial of two treatment regimens for lung cancer
# # data(veteran, package = "randomForestSRC")
# # rfsrc_veteran <- rfsrc(Surv(time, status) ~ ., data = veteran, ntree = 100)
# data(rfsrc_veteran, package = "ggRandomForests")
# gg_dta <- gg_rfsrc(rfsrc_veteran)
# plot(gg_dta)
#
# gg_dta <- gg_rfsrc(rfsrc_veteran, conf.int=.95)
# plot(gg_dta)
#
# gg_dta <- gg_rfsrc(rfsrc_veteran, by="trt")
# plot(gg_dta)
# ## End(Not run)
## Not run:
# ## -------- pbc data
# ## We don't run this because of bootstrap confidence limits
# data(rfsrc_pbc, package = "ggRandomForests")
# ## End(Not run)
## Not run:
# gg_dta <- gg_rfsrc(rfsrc_pbc)
# plot(gg_dta)
#
# gg_dta <- gg_rfsrc(rfsrc_pbc, conf.int=.95)
# plot(gg_dta)
# ## End(Not run)
## Not run:
# gg_dta <- gg_rfsrc(rfsrc_pbc, by="treatment")
# plot(gg_dta)
# ## End(Not run)
Run the code above in your browser using DataLab