## ------------------------------------------------------------
## classification
## ------------------------------------------------------------
## -------- iris data
## iris
rfsrc_iris <- rfsrc(Species ~., data = iris)
#data(rfsrc_iris, package="ggRandomForests")
gg_dta <- gg_variable(rfsrc_iris)
plot(gg_dta, xvar="Sepal.Width")
plot(gg_dta, xvar="Sepal.Length")
plot(gg_dta, xvar=rfsrc_iris$xvar.names,
panel=TRUE) # , se=FALSE)
## ------------------------------------------------------------
## regression
## ------------------------------------------------------------
## Not run:
# ## -------- air quality data
# #rfsrc_airq <- rfsrc(Ozone ~ ., data = airquality)
# data(rfsrc_airq, package="ggRandomForests")
# gg_dta <- gg_variable(rfsrc_airq)
#
# # an ordinal variable
# gg_dta[,"Month"] <- factor(gg_dta[,"Month"])
#
# plot(gg_dta, xvar="Wind")
# plot(gg_dta, xvar="Temp")
# plot(gg_dta, xvar="Solar.R")
#
#
# plot(gg_dta, xvar=c("Solar.R", "Wind", "Temp", "Day"), panel=TRUE)
#
# plot(gg_dta, xvar="Month", notch=TRUE)
# ## End(Not run)
## Not run:
# ## -------- motor trend cars data
# #rfsrc_mtcars <- rfsrc(mpg ~ ., data = mtcars)
# data(rfsrc_mtcars, package="ggRandomForests")
# gg_dta <- gg_variable(rfsrc_mtcars)
#
# # mtcars$cyl is an ordinal variable
# gg_dta$cyl <- factor(gg_dta$cyl)
# gg_dta$am <- factor(gg_dta$am)
# gg_dta$vs <- factor(gg_dta$vs)
# gg_dta$gear <- factor(gg_dta$gear)
# gg_dta$carb <- factor(gg_dta$carb)
#
# plot(gg_dta, xvar="cyl")
#
# # Others are continuous
# plot(gg_dta, xvar="disp")
# plot(gg_dta, xvar="hp")
# plot(gg_dta, xvar="wt")
#
#
# # panels
# plot(gg_dta,xvar=c("disp","hp", "drat", "wt", "qsec"), panel=TRUE)
# plot(gg_dta, xvar=c("cyl", "vs", "am", "gear", "carb"), panel=TRUE, notch=TRUE)
# ## End(Not run)
## -------- Boston data
## ------------------------------------------------------------
## survival examples
## ------------------------------------------------------------
## Not run:
# ## -------- veteran data
# ## survival
# # data(veteran, package = "randomForestSRC")
# # rfsrc_veteran <- rfsrc(Surv(time,status)~., veteran, nsplit = 10, ntree = 100)
# data(rfsrc_veteran, package="ggRandomForests")
#
# # get the 1 year survival time.
# gg_dta <- gg_variable(rfsrc_veteran, time=90)
#
# # Generate variable dependance plots for age and diagtime
# plot(gg_dta, xvar = "age")
# plot(gg_dta, xvar = "diagtime", )
#
# # Generate coplots
# plot(gg_dta, xvar = c("age", "diagtime"), panel=TRUE, se=FALSE)
#
# # If we want to compare survival at different time points, say 30, 90 day
# # and 1 year
# gg_dta <- gg_variable(rfsrc_veteran, time=c(30, 90, 365))
#
# # Generate variable dependance plots for age and diagtime
# plot(gg_dta, xvar = "age")
# ## End(Not run)
## -------- pbc data
Run the code above in your browser using DataLab