## Not run:
# ## From vignette(randomForestRegression, package="ggRandomForests")
# ##
# data(rfsrc_Boston)
# rm_pts <- quantile_pts(rfsrc_Boston$xvar$rm, groups=49, intervals=TRUE)
#
# # Load the stored partial coplot data.
# data(partial_Boston_surf)
#
# # Instead of groups, we want the raw rm point values,
# # To make the dimensions match, we need to repeat the values
# # for each of the 50 points in the lstat direction
# rm.tmp <- do.call(c,lapply(rm_pts,
# function(grp){rep(grp, length(partial_Boston_surf))}))
#
# # Convert the list of plot.variable output to
# partial_surf <- do.call(rbind,lapply(partial_Boston_surf, gg_partial))
#
# # attach the data to the gg_partial_coplot
# partial_surf$rm <- rm.tmp
#
# # Transform the gg_partial_coplot object into a list of three named matrices
# # for surface plotting with plot3D::surf3D
# srf <- surface_matrix(partial_surf, c("lstat", "rm", "yhat"))
# ## End(Not run)
## Not run:
# # surf3D is in the plot3D package.
# library(plot3D)
# # Generate the figure.
# surf3D(x=srf$x, y=srf$y, z=srf$z, col=topo.colors(10),
# colkey=FALSE, border = "black", bty="b2",
# shade = 0.5, expand = 0.5,
# lighting = TRUE, lphi = -50,
# xlab="Lower Status", ylab="Average Rooms", zlab="Median Value"
# )
# ## End(Not run)
Run the code above in your browser using DataLab