## ------------------------------------------------------------
## classification example
## ------------------------------------------------------------
## -------- iris data
# rfsrc_iris <- rfsrc(Species ~ ., data = iris)
data(rfsrc_iris, package="ggRandomForests")
gg_dta<- gg_rfsrc(rfsrc_iris)
plot(gg_dta)
## ------------------------------------------------------------
## Regression example
## ------------------------------------------------------------
if (FALSE) {
## -------- air quality data
# rfsrc_airq <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute")
data(rfsrc_airq, package="ggRandomForests")
gg_dta<- gg_rfsrc(rfsrc_airq)
plot(gg_dta)
}
## -------- Boston data
data(rfsrc_boston, package="ggRandomForests")
plot(gg_rfsrc(rfsrc_boston))
### randomForest example
data(Boston, package="MASS")
rf_boston <- randomForest::randomForest(medv ~ ., data = Boston)
plot(gg_rfsrc(rf_boston))
if (FALSE) {
## -------- mtcars data
data(rfsrc_mtcars, package="ggRandomForests")
gg_dta<- gg_rfsrc(rfsrc_mtcars)
plot(gg_dta)
}
## ------------------------------------------------------------
## Survival example
## ------------------------------------------------------------
if (FALSE) {
## -------- veteran data
## randomized trial of two treatment regimens for lung cancer
# data(veteran, package = "randomForestSRC")
# rfsrc_veteran <- rfsrc(Surv(time, status) ~ ., data = veteran, ntree = 100)
data(rfsrc_veteran, package = "ggRandomForests")
gg_dta <- gg_rfsrc(rfsrc_veteran)
plot(gg_dta)
gg_dta <- gg_rfsrc(rfsrc_veteran, conf.int=.95)
plot(gg_dta)
gg_dta <- gg_rfsrc(rfsrc_veteran, by="trt")
plot(gg_dta)
## -------- pbc data
## We don't run this because of bootstrap confidence limits
data(rfsrc_pbc, package = "ggRandomForests")
gg_dta <- gg_rfsrc(rfsrc_pbc)
plot(gg_dta)
gg_dta <- gg_rfsrc(rfsrc_pbc, conf.int=.95)
plot(gg_dta)
gg_dta <- gg_rfsrc(rfsrc_pbc, by="treatment")
plot(gg_dta)
}
Run the code above in your browser using DataLab