## ------------------------------------------------------------
## classification example
## ------------------------------------------------------------
## -------- iris data
# rfsrc_iris <- rfsrc(Species ~ ., data = iris)
data(rfsrc_iris, package="ggRandomForests")
gg_dta <- gg_vimp(rfsrc_iris)
plot(gg_dta)
## ------------------------------------------------------------
## regression example
## ------------------------------------------------------------
if (FALSE) {
## -------- air quality data
# rfsrc_airq <- rfsrc(Ozone ~ ., airquality)
data(rfsrc_airq, package="ggRandomForests")
gg_dta <- gg_vimp(rfsrc_airq)
plot(gg_dta)
}
## -------- Boston data
data(rfsrc_boston, package="ggRandomForests")
gg_dta <- gg_vimp(rfsrc_boston)
plot(gg_dta)
## -------- Boston data
data(Boston, package="MASS")
rf_boston <- randomForest::randomForest(medv~., Boston)
gg_dta <- gg_vimp(rf_boston)
plot(gg_dta)
if (FALSE) {
## -------- mtcars data
data(rfsrc_mtcars, package="ggRandomForests")
gg_dta <- gg_vimp(rfsrc_mtcars)
plot(gg_dta)
}
## ------------------------------------------------------------
## survival example
## ------------------------------------------------------------
if (FALSE) {
## -------- veteran data
data(rfsrc_veteran, package="ggRandomForests")
gg_dta <- gg_vimp(rfsrc_veteran)
plot(gg_dta)
## -------- pbc data
data(rfsrc_pbc, package="ggRandomForests")
gg_dta <- gg_vimp(rfsrc_pbc)
plot(gg_dta)
# Restrict to only the top 10.
gg_dta <- gg_vimp(rfsrc_pbc, nvar=10)
plot(gg_dta)
}
Run the code above in your browser using DataLab