Learn R Programming

ggRandomForests (version 2.2.1)

gg_roc.rfsrc: ROC (Receiver operator curve) data from a classification random forest.

Description

The sensitivity and specificity of a randomForest classification object.

Usage

# S3 method for rfsrc
gg_roc(object, which_outcome, oob, ...)

Value

gg_roc

data.frame for plotting ROC curves.

Arguments

object

an rfsrc classification object

which_outcome

select the classification outcome of interest.

oob

use oob estimates (default TRUE)

...

extra arguments (not used)

See Also

plot.gg_roc rfsrc randomForest

Examples

Run this code
## ------------------------------------------------------------
## classification example
## ------------------------------------------------------------
## -------- iris data
rfsrc_iris <- rfsrc(Species ~ ., data = iris)

# ROC for setosa
gg_dta <- gg_roc(rfsrc_iris, which_outcome=1)
plot(gg_dta)

# ROC for versicolor
gg_dta <- gg_roc(rfsrc_iris, which_outcome=2)
plot(gg_dta)

# ROC for virginica
gg_dta <- gg_roc(rfsrc_iris, which_outcome=3)
plot(gg_dta)

## -------- iris data
rf_iris <- randomForest::randomForest(Species ~ ., data = iris)

# ROC for setosa
gg_dta <- gg_roc(rf_iris, which_outcome=1)
plot(gg_dta)

# ROC for versicolor
gg_dta <- gg_roc(rf_iris, which_outcome=2)
plot(gg_dta)

# ROC for virginica
gg_dta <- gg_roc(rf_iris, which_outcome=3)
plot(gg_dta)


Run the code above in your browser using DataLab