Learn R Programming

ggRandomForests (version 2.2.1)

plot.gg_vimp: Plot a gg_vimp object, extracted variable importance of a rfsrc object

Description

Plot a gg_vimp object, extracted variable importance of a rfsrc object

Usage

# S3 method for gg_vimp
plot(x, relative, lbls, ...)

Value

ggplot object

Arguments

x

gg_vimp object created from a rfsrc object

relative

should we plot vimp or relative vimp. Defaults to vimp.

lbls

A vector of alternative variable labels. Item names should be the same as the variable names.

...

optional arguments passed to gg_vimp if necessary

References

Breiman L. (2001). Random forests, Machine Learning, 45:5-32.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

Ishwaran H. and Kogalur U.B. (2013). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.4.

See Also

gg_vimp

Examples

Run this code
if (FALSE) {
## ------------------------------------------------------------
## classification example
## ------------------------------------------------------------
## -------- iris data
# rfsrc_iris <- rfsrc(Species ~ ., data = iris)
data(rfsrc_iris, package="ggRandomForests")
gg_dta <- gg_vimp(rfsrc_iris)
plot(gg_dta)

## ------------------------------------------------------------
## regression example
## ------------------------------------------------------------
## -------- air quality data
# rfsrc_airq <- rfsrc(Ozone ~ ., airquality)
data(rfsrc_airq, package="ggRandomForests")
gg_dta <- gg_vimp(rfsrc_airq)
plot(gg_dta)

## -------- Boston data
data(rfsrc_boston, package="ggRandomForests")
gg_dta <- gg_vimp(rfsrc_boston)
plot(gg_dta)

## -------- mtcars data
data(rfsrc_mtcars, package="ggRandomForests")
gg_dta <- gg_vimp(rfsrc_mtcars)
plot(gg_dta)

## ------------------------------------------------------------
## survival example
## ------------------------------------------------------------
## -------- veteran data
data(rfsrc_veteran, package="ggRandomForests")
gg_dta <- gg_vimp(rfsrc_veteran)
plot(gg_dta)

## -------- pbc data
data(rfsrc_pbc, package="ggRandomForests")
gg_dta <- gg_vimp(rfsrc_pbc)
plot(gg_dta)

}

Run the code above in your browser using DataLab