library(IRanges)
lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500),
seq(10, 0.001, length = 500))
xVector <- rpois(1e4, lambda)
xRle <- Rle(xVector)
xRleList <- RleList(xRle, 2L * xRle)
ggplot() + stat_bin(xRle)
ggplot(xRle) + stat_bin()
ggplot(xRle) + stat_bin(nbin = 100)
ggplot(xRle) + stat_bin(binwidth = 200)
p1 <- ggplot(xRle) + stat_bin(type = "viewMeans")
p2 <- ggplot(xRle) + stat_bin(type = "viewSums")
## y scale are different.
tracks(viewMeans = p1, viewSums = p2)
ggplot(xRle) + stat_bin(geom = "heatmap")
ggplot(xRle) + stat_bin(nbin = 100, geom = "heatmap")
ggplot(xRle) + stat_bin(binwidth = 200, geom = "heatmap")
## for RleList
ggplot(xRleList) + stat_bin()
ggplot(xRleList) + stat_bin(nbin = 100)
ggplot(xRleList) + stat_bin(binwidth = 200)
p1 <- ggplot(xRleList) + stat_bin(type = "viewMeans")
p2 <- ggplot(xRleList) + stat_bin(type = "viewSums")
## y scale are different.
tracks(viewMeans = p1, viewSums = p2)
ggplot(xRleList) + stat_bin(geom = "heatmap")
ggplot(xRleList) + stat_bin(nbin = 100, geom = "heatmap")
ggplot(xRleList) + stat_bin(binwidth = 200, geom = "heatmap")
Run the code above in your browser using DataLab