Learn R Programming

ggdag: An R Package for visualizing and analyzing causal directed acyclic graphs

Tidy, analyze, and plot causal directed acyclic graphs (DAGs). ggdag uses the powerful dagitty package to create and analyze structural causal models and plot them using ggplot2 and ggraph in a consistent and easy manner.

Installation

You can install ggdag with:

install.packages("ggdag")

Or you can install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("r-causal/ggdag")

Example

ggdag makes it easy to use dagitty in the context of the tidyverse. You can directly tidy dagitty objects or use convenience functions to create DAGs using a more R-like syntax:

library(ggdag)
library(ggplot2)

#  example from the dagitty package
dag <- dagitty::dagitty("dag {
    y <- x <- z1 <- v -> z2 -> y
    z1 <- w1 <-> w2 -> z2
    x <- w1 -> y
    x <- w2 -> y
    x [exposure]
    y [outcome]
  }")

tidy_dag <- tidy_dagitty(dag)

tidy_dag
#> # A DAG with 7 nodes and 12 edges
#> #
#> # Exposure: x
#> # Outcome: y
#> #
#> # A tibble: 13 × 8
#>    name       x      y direction to       xend   yend circular
#>    <chr>  <dbl>  <dbl> <fct>     <chr>   <dbl>  <dbl> <lgl>   
#>  1 v     0.496  -3.40  ->        z1     1.83   -2.92  FALSE   
#>  2 v     0.496  -3.40  ->        z2     0.0188 -2.08  FALSE   
#>  3 w1    1.73   -1.94  ->        x      2.07   -1.42  FALSE   
#>  4 w1    1.73   -1.94  ->        y      1.00   -0.944 FALSE   
#>  5 w1    1.73   -1.94  ->        z1     1.83   -2.92  FALSE   
#>  6 w1    1.73   -1.94  <->       w2     0.873  -1.56  FALSE   
#>  7 w2    0.873  -1.56  ->        x      2.07   -1.42  FALSE   
#>  8 w2    0.873  -1.56  ->        y      1.00   -0.944 FALSE   
#>  9 w2    0.873  -1.56  ->        z2     0.0188 -2.08  FALSE   
#> 10 x     2.07   -1.42  ->        y      1.00   -0.944 FALSE   
#> 11 y     1.00   -0.944 <NA>      <NA>  NA      NA     FALSE   
#> 12 z1    1.83   -2.92  ->        x      2.07   -1.42  FALSE   
#> 13 z2    0.0188 -2.08  ->        y      1.00   -0.944 FALSE

#  using more R-like syntax to create the same DAG
tidy_ggdag <- dagify(
  y ~ x + z2 + w2 + w1,
  x ~ z1 + w1 + w2,
  z1 ~ w1 + v,
  z2 ~ w2 + v,
  w1 ~ ~w2, # bidirected path
  exposure = "x",
  outcome = "y"
) %>%
  tidy_dagitty()

tidy_ggdag
#> # A DAG with 7 nodes and 12 edges
#> #
#> # Exposure: x
#> # Outcome: y
#> #
#> # A tibble: 13 × 8
#>    name      x     y direction to     xend  yend circular
#>    <chr> <dbl> <dbl> <fct>     <chr> <dbl> <dbl> <lgl>   
#>  1 v     -3.58  3.30 ->        z1    -4.05  4.63 FALSE   
#>  2 v     -3.58  3.30 ->        z2    -2.23  3.74 FALSE   
#>  3 w1    -3.03  5.74 ->        x     -3.20  5.14 FALSE   
#>  4 w1    -3.03  5.74 ->        y     -1.98  5.22 FALSE   
#>  5 w1    -3.03  5.74 ->        z1    -4.05  4.63 FALSE   
#>  6 w1    -3.03  5.74 <->       w2    -2.35  4.72 FALSE   
#>  7 w2    -2.35  4.72 ->        x     -3.20  5.14 FALSE   
#>  8 w2    -2.35  4.72 ->        y     -1.98  5.22 FALSE   
#>  9 w2    -2.35  4.72 ->        z2    -2.23  3.74 FALSE   
#> 10 x     -3.20  5.14 ->        y     -1.98  5.22 FALSE   
#> 11 y     -1.98  5.22 <NA>      <NA>  NA    NA    FALSE   
#> 12 z1    -4.05  4.63 ->        x     -3.20  5.14 FALSE   
#> 13 z2    -2.23  3.74 ->        y     -1.98  5.22 FALSE

ggdag also provides functionality for analyzing DAGs and plotting them in ggplot2:

ggdag(tidy_ggdag) +
  theme_dag()
ggdag_adjustment_set(tidy_ggdag, node_size = 14) +
  theme(legend.position = "bottom")

As well as geoms and other functions for plotting them directly in ggplot2:

dagify(m ~ x + y) %>%
  tidy_dagitty() %>%
  node_dconnected("x", "y", controlling_for = "m") %>%
  ggplot(aes(
    x = x,
    y = y,
    xend = xend,
    yend = yend,
    shape = adjusted,
    col = d_relationship
  )) +
  geom_dag_edges(end_cap = ggraph::circle(10, "mm")) +
  geom_dag_collider_edges() +
  geom_dag_point() +
  geom_dag_text(col = "white") +
  theme_dag() +
  scale_adjusted() +
  expand_plot(expand_y = expansion(c(0.2, 0.2))) +
  scale_color_viridis_d(
    name = "d-relationship",
    na.value = "grey85",
    begin = .35
  )

And common structures of bias:

ggdag_equivalent_dags(confounder_triangle())

ggdag_butterfly_bias(edge_type = "diagonal")

Copy Link

Version

Install

install.packages('ggdag')

Monthly Downloads

5,958

Version

0.2.13

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Malcolm Barrett

Last Published

July 22nd, 2024

Functions in ggdag (0.2.13)

Equivalent DAGs and Classes

Generating Equivalent Models
expand_plot

Quickly scale the size of a ggplot
Assess d-separation between variables

D-relationship between variables
dagify

Create a dagitty DAG using R-like syntax
geom_dag_collider_edges

Edges for paths activated by stratification on colliders
fortify

Fortify a tidy_dagitty object for ggplot2
DAG Edges

Directed DAG edges
dag

Create a dagitty DAG
Exogenous Variables

Find Exogenous Variables
dplyr

Dplyr verb methods for tidy_dagitty objects
ggdag

Quickly plot a DAG in ggplot2
geom_dag_edges

Directed and bidirected DAG edges
geom_dag_text

Node text
ggdag_classic

Quickly plot a DAG in ggplot2
is.tidy_dagitty

Test for object class for tidy_dagitty
Nodes

DAG Nodes
Pathways

Find Open Paths Between Variables
Test if Variable Is Collider

Detecting colliders in DAGs
reexports

Objects exported from other packages
ggdag-package

ggdag: Analyze and Create Elegant Directed Acyclic Graphs
Instrumental Variables

Find Instrumental Variables
ggplot.tidy_dagitty

Create a new ggplot
pull_dag

Pull components from DAG objects
Quick Plots for Common DAGs

Quickly create a DAGs with common structures of bias
geom_dag_label

Node text labels
print.tidy_dagitty

Print a tidy_dagitty
%>%

Pipe operator
remove_axes

Quickly remove plot axes and grids
DAG Labels

DAG labels
is_confounder

Assess if a variable confounds a relationship
Assess familial relationships between variables

Familial relationships between variables
time_ordered_coords

Create a time-ordered coordinate data frame
theme_dag_blank

Minimalist DAG themes
tbl_df.tidy_daggity

Convert a tidy_dagitty object to tbl_df
scale_adjusted

Common scale adjustments for DAGs
simulate_data

Simulate Data from Structural Equation Model
theme_dag_grey

Simple grey themes for DAGs
tidy_dagitty

Tidy a dagitty object
Variable Status

Find variable status
ggrepel functions

Repulsive textual annotations
Canonicalize DAGs

Canonicalize a DAG
as_tbl_graph

Convert DAGS to tidygraph
as.tbl.tidy_daggity

Convert a tidy_dagitty object to tbl
coordinates

Manipulate DAG coordinates
Colliders

Find colliders
Adjust for variables

Adjust for variables and activate any biasing paths that result
activate_collider_paths

Activate paths opened by stratifying on a collider
Covariate Adjustment Sets

Covariate Adjustment Sets
as.data.frame.tidy_dagitty

Convert a tidy_dagitty object to data.frame
as_tidy_dagitty

Convert objects into tidy_dagitty objects