Learn R Programming

ggformula (version 0.9.0)

gf_labs: Non-layer functions for gf plots

Description

These functions modify things like labels, limits, scales, etc. for plots ggplot2 plots. They are wrappers around functions in ggplot2 that allow for chaining syntax.

Usage

gf_labs(object, ...)

gf_lims(object, ...)

gf_refine(object, ...)

Arguments

object

a gg object

...

additional arguments passed through to the similarly named function in ggplot2.

Value

a modified gg object

Details

gf_refine() provides a mechanism to replace + with the chaining operator from magrittr. Each of its arguments is added in turn to the base plot in object. The other functions are thin wrappers around specific ggplot2 refinement functions and pass their arguments through to the similarly named ggplot2 functions.

Examples

Run this code
# NOT RUN {
if (require(mosaicData)) {
gf_dens( ~ cesd, color = ~ substance, size = 1.5, data = HELPrct) %>%
gf_labs(
  title = "Center for Epidemiologic Studies Depression measure",
  subtitle = "(at baseline)",
  color = "Abused substance: ",
  x = "CESD score",
  y = "",
  caption = "Source: HELPrct"
) %>%
  gf_theme(theme_classic()) %>%
  gf_theme(
    axis.text.y = element_blank(),
    legend.position = "top",
    plot.title = element_text(hjust = 0.5, color = "navy"),
    plot.subtitle = element_text(hjust = 0.5, color = "navy", size = 12))
}
gf_point(eruptions ~ waiting, data = faithful, alpha = 0.5)
gf_point(eruptions ~ waiting, data = faithful, alpha = 0.5) %>%
  gf_lims(x = c(65, NA), y = c(3, NA))

# modify scales using gf_refine()
gf_jitter(Sepal.Length ~ Sepal.Width, color = ~ Species, data = iris) %>%
  gf_refine(scale_color_brewer(type = "qual", palette = 3)) %>%
  gf_theme(theme_bw())

gf_jitter(Sepal.Length ~ Sepal.Width, color = ~ Species, data = iris) %>%
  gf_refine(scale_color_manual(values = c("red", "navy", "limegreen"))) %>%
  gf_theme(theme_bw())

# }

Run the code above in your browser using DataLab