gg <- gggenomes(emale_genes, emale_seqs, emale_tirs, emale_ava)
gg %>% track_info() # info about track ids, positions and types
# get first feat track that isn't "genes" (all equivalent)
gg %>% pull_feats() # easiest
gg %>% pull_feats(feats) # by id
gg %>% pull_feats(1) # by position
gg %>% pull_feats(2, .ignore = NULL) # default .ignore="genes"
# get "seqs" track (always track #1)
gg %>% pull_seqs()
# plot integrated transposons and GC content for some viral genomes
gg <- gggenomes(seqs = emale_seqs, feats = list(emale_ngaros, GC = emale_gc))
gg + geom_seq() +
geom_feat(color = "skyblue") + # defaults to data=feats()
geom_line(aes(x, y + score - .6, group = y), data = feats(GC), color = "gray60")
Run the code above in your browser using DataLab