library("MASS")
data(geyser, "MASS")
m <- ggplot(geyser, aes(x = duration, y = waiting)) +
geom_point() + xlim(0.5, 6) + ylim(40, 110)
m + geom_density2d()
dens <- kde2d(geyser$duration, geyser$waiting, n = 50,
lims = c(0.5, 6, 40, 110))
densdf <- data.frame(expand.grid(duration = dens$x, waiting = dens$y),
z = as.vector(dens$z))
m + geom_contour(aes(z=z), data=densdf)
m + geom_density2d() + scale_y_log10()
m + geom_density2d() + coord_trans(y="log10")
m + stat_density2d(aes(fill = ..level..), geom="polygon")
qplot(duration, waiting, data=geyser, geom=c("point","density2d")) +
xlim(0.5, 6) + ylim(40, 110)
# If you map an aesthetic to a categorical variable, you will get a
# set of contours for each value of that variable
set.seed(4393)
dsmall <- diamonds[sample(nrow(diamonds), 1000), ]
qplot(x, y, data = dsmall, geom = "density2d", colour = cut)
qplot(x, y, data = dsmall, geom = "density2d", linetype = cut)
qplot(carat, price, data = dsmall, geom = "density2d", colour = cut)
d <- ggplot(dsmall, aes(carat, price)) + xlim(1,3)
d + geom_point() + geom_density2d()
# If we turn contouring off, we can use use geoms like tiles:
d + stat_density2d(geom="tile", aes(fill = ..density..), contour = FALSE)
last_plot() + scale_fill_gradient(limits=c(1e-5,8e-4))
# Or points:
d + stat_density2d(geom="point", aes(size = ..density..), contour = FALSE)
Run the code above in your browser using DataLab