# From ?qqplot
y <- rt(200, df = 5)
qplot(sample = y, stat="qq")
# qplot is smart enough to use stat_qq if you use sample
qplot(sample = y)
qplot(sample = precip)
qplot(sample = y, dist = qt, dparams = list(df = 5))
df <- data.frame(y)
ggplot(df, aes(sample = y)) + stat_qq()
ggplot(df, aes(sample = y)) + geom_point(stat = "qq")
# Use fitdistr from MASS to estimate distribution params
library(MASS)
params <- as.list(fitdistr(y, "t")$estimate)
ggplot(df, aes(sample = y)) + stat_qq(dist = qt, dparam = params)
# Using to explore the distribution of a variable
qplot(sample = mpg, data = mtcars)
qplot(sample = mpg, data = mtcars, colour = factor(cyl))
Run the code above in your browser using DataLab