stat_qq(mapping = NULL, data = NULL, geom = "point",
position = "identity", distribution = qnorm, dparams = list(),
na.rm = FALSE, ...)
FALSE
(the default), removes missing values with
a warning. If TRUE
silently removes missing values.aes
or aes_string
. Only needs to be set
at the layer level if you are overriding the plot defaults.# qplot is smart enough to use stat_qq if you use sample qplot(sample = y) qplot(sample = precip)
qplot(sample = y, dist = qt, dparams = list(df = 5))
df <- data.frame(y) ggplot(df, aes(sample = y)) + stat_qq() ggplot(df, aes(sample = y)) + geom_point(stat = "qq")
# Use fitdistr from MASS to estimate distribution params library(MASS) params <- as.list(fitdistr(y, "t")$estimate) ggplot(df, aes(sample = y)) + stat_qq(dist = qt, dparam = params)
# Using to explore the distribution of a variable qplot(sample = mpg, data = mtcars) qplot(sample = mpg, data = mtcars, colour = factor(cyl))