stat_density2d(mapping = NULL, data = NULL, geom = "density2d",
position = "identity", na.rm = FALSE, contour = TRUE, n = 100, ...)
aes
or aes_string
. Only needs to be set
at the layer level if you are overriding the plot defaults.FALSE
(the default), removes missing values with
a warning. If TRUE
silently removes missing values.TRUE
, contour the results of the 2d density
estimationkde2d
stat_contour
m <- ggplot(geyser, aes(x = duration, y = waiting)) + geom_point() + xlim(0.5, 6) + ylim(40, 110) m + geom_density2d()
dens <- kde2d(geyser$duration, geyser$waiting, n = 50, lims = c(0.5, 6, 40, 110)) densdf <- data.frame(expand.grid(duration = dens$x, waiting = dens$y), z = as.vector(dens$z)) m + geom_contour(aes(z=z), data=densdf)
m + geom_density2d() + scale_y_log10() m + geom_density2d() + coord_trans(y="log10")
m + stat_density2d(aes(fill = ..level..), geom="polygon")
qplot(duration, waiting, data=geyser, geom=c("point","density2d")) + xlim(0.5, 6) + ylim(40, 110)
# If you map an aesthetic to a categorical variable, you will get a # set of contours for each value of that variable set.seed(4393) dsmall <- diamonds[sample(nrow(diamonds), 1000), ] qplot(x, y, data = dsmall, geom = "density2d", colour = cut) qplot(x, y, data = dsmall, geom = "density2d", linetype = cut) qplot(carat, price, data = dsmall, geom = "density2d", colour = cut) d <- ggplot(dsmall, aes(carat, price)) + xlim(1,3) d + geom_point() + geom_density2d()
# If we turn contouring off, we can use use geoms like tiles: d + stat_density2d(geom="tile", aes(fill = ..density..), contour = FALSE) last_plot() + scale_fill_gradient(limits=c(1e-5,8e-4))
# Or points: d + stat_density2d(geom="point", aes(size = ..density..), contour = FALSE)