geom_path()
connects the observations in the order in which they appear
in the data. geom_line()
connects them in order of the variable on the
x axis. geom_step()
creates a stairstep plot, highlighting exactly
when changes occur.geom_path(mapping = NULL, data = NULL, stat = "identity",
position = "identity", lineend = "butt", linejoin = "round",
linemitre = 1, na.rm = FALSE, arrow = NULL, show.legend = NA,
inherit.aes = TRUE, ...)geom_line(mapping = NULL, data = NULL, stat = "identity",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...)
geom_step(mapping = NULL, data = NULL, stat = "identity",
position = "identity", direction = "hv", na.rm = FALSE,
show.legend = NA, inherit.aes = TRUE, ...)
FALSE
(the default), removes missing values with
a warning. If TRUE
silently removes missing values.arrow
NA
, the default, includes if any aesthetics are mapped.
FALSE
never includes, and TRUE
always includes.FALSE
, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g.
layer
. There are
three types of arguments you can use here:
color = "red"
orsize = 3
.# geom_step() is useful when you want to highlight exactly when # the y value chanes recent <- economics[economics$date > as.Date("2013-01-01"), ] ggplot(recent, aes(date, unemploy)) + geom_line() ggplot(recent, aes(date, unemploy)) + geom_step()
# geom_path lets you explore how two variables are related over time, # e.g. unemployment and personal savings rate m <- ggplot(economics, aes(unemploy/pop, psavert)) m + geom_path() m + geom_path(aes(colour = as.numeric(date)))
# Changing parameters ---------------------------------------------- ggplot(economics, aes(date, unemploy)) + geom_line(colour = "red")
# Use the arrow parameter to add an arrow to the line # See ?arrow for more details c <- ggplot(economics, aes(x = date, y = pop)) c + geom_line(arrow = arrow()) c + geom_line( arrow = arrow(angle = 15, ends = "both", type = "closed") )
# Control line join parameters df <- data.frame(x = 1:3, y = c(4, 1, 9)) base <- ggplot(df, aes(x, y)) base + geom_path(size = 10) base + geom_path(size = 10, lineend = "round") base + geom_path(size = 10, linejoin = "mitre", lineend = "butt")
# NAs break the line. Use na.rm = T to suppress the warning message df <- data.frame( x = 1:5, y1 = c(1, 2, 3, 4, NA), y2 = c(NA, 2, 3, 4, 5), y3 = c(1, 2, NA, 4, 5) ) ggplot(df, aes(x, y1)) + geom_point() + geom_line() ggplot(df, aes(x, y2)) + geom_point() + geom_line() ggplot(df, aes(x, y3)) + geom_point() + geom_line()
# Setting line type vs colour/size # Line type needs to be applied to a line as a whole, so it can # not be used with colour or size that vary across a line x <- seq(0.01, .99, length.out = 100) df <- data.frame( x = rep(x, 2), y = c(qlogis(x), 2 * qlogis(x)), group = rep(c("a","b"), each = 100) ) p <- ggplot(df, aes(x=x, y=y, group=group)) # These work p + geom_line(linetype = 2) p + geom_line(aes(colour = group), linetype = 2) p + geom_line(aes(colour = x)) # But this doesn't should_stop(p + geom_line(aes(colour = x), linetype=2))
geom_polygon
: Filled paths (polygons);
geom_segment
: Line segments