geom_point(mapping = NULL, data = NULL, stat = "identity",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...)
FALSE
(the default), removes missing values with
a warning. If TRUE
silently removes missing values.NA
, the default, includes if any aesthetics are mapped.
FALSE
never includes, and TRUE
always includes.FALSE
, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g.
layer
. There are
three types of arguments you can use here:
color = "red"
orsize = 3
.# Add aesthetic mappings p + geom_point(aes(colour = factor(cyl))) p + geom_point(aes(shape = factor(cyl))) p + geom_point(aes(size = qsec))
# Change scales p + geom_point(aes(colour = cyl)) + scale_colour_gradient(low = "blue") p + geom_point(aes(shape = factor(cyl))) + scale_shape(solid = FALSE)
# Set aesthetics to fixed value ggplot(mtcars, aes(wt, mpg)) + geom_point(colour = "red", size = 3)
# Varying alpha is useful for large datasets d <- ggplot(diamonds, aes(carat, price)) d + geom_point(alpha = 1/10) d + geom_point(alpha = 1/20) d + geom_point(alpha = 1/100)
# For shapes that have a border (like 21), you can colour the inside and # outside separately. Use the stroke aesthetic to modify the width of the # border ggplot(mtcars, aes(wt, mpg)) + geom_point(shape = 21, colour = "black", fill = "white", size = 5, stroke = 5)
# You can create interesting shapes by layering multiple points of # different sizes p <- ggplot(mtcars, aes(mpg, wt, shape = factor(cyl))) p + geom_point(aes(colour = factor(cyl)), size = 4) + geom_point(colour = "grey90", size = 1.5) p + geom_point(colour = "black", size = 4.5) + geom_point(colour = "pink", size = 4) + geom_point(aes(shape = factor(cyl)))
# These extra layers don't usually appear in the legend, but we can # force their inclusion p + geom_point(colour = "black", size = 4.5, show.legend = TRUE) + geom_point(colour = "pink", size = 4, show.legend = TRUE) + geom_point(aes(shape = factor(cyl)))
# geom_point warns when missing values have been dropped from the data set # and not plotted, you can turn this off by setting na.rm = TRUE mtcars2 <- transform(mtcars, mpg = ifelse(runif(32) < 0.2, NA, mpg)) ggplot(mtcars2, aes(wt, mpg)) + geom_point() ggplot(mtcars2, aes(wt, mpg)) + geom_point(na.rm = TRUE)
scale_size
to see scale area of points, instead of
radius, geom_jitter
to jitter points to reduce (mild)
overplottinggeom_jitter
for possibilities.The bubblechart is a scatterplot with a third variable mapped to the size of points. There are no special names for scatterplots where another variable is mapped to point shape or colour, however.
The biggest potential problem with a scatterplot is overplotting: whenever
you have more than a few points, points may be plotted on top of one
another. This can severely distort the visual appearance of the plot.
There is no one solution to this problem, but there are some techniques
that can help. You can add additional information with
geom_smooth
, geom_quantile
or
geom_density_2d
. If you have few unique x values,
geom_boxplot
may also be useful. Alternatively, you can
summarise the number of points at each location and display that in some
way, using stat_sum
. Another technique is to use transparent
points, e.g. geom_point(alpha = 0.05)
.