if (require(ggplot2movies)) {
m <- ggplot(subset(movies, votes > 1000), aes(rating, votes)) +
geom_point(na.rm = TRUE)
m
# Manipulating the default position scales lets you:
# * change the axis labels
m + scale_y_continuous("number of votes")
m + scale_y_continuous(quote(votes ^ alpha))
# * modify the axis limits
m + scale_y_continuous(limits = c(0, 5000))
m + scale_y_continuous(limits = c(1000, 10000))
m + scale_x_continuous(limits = c(7, 8))
# you can also use the short hand functions xlim and ylim
m + ylim(0, 5000)
m + ylim(1000, 10000)
m + xlim(7, 8)
# * choose where the ticks appear
m + scale_x_continuous(breaks = 1:10)
m + scale_x_continuous(breaks = c(1,3,7,9))
# * manually label the ticks
m + scale_x_continuous(breaks = c(2,5,8), labels = c("two", "five", "eight"))
m + scale_x_continuous(breaks = c(2,5,8), labels = c("horrible", "ok", "awesome"))
m + scale_x_continuous(breaks = c(2,5,8), labels = expression(Alpha, Beta, Omega))
# There are a few built in transformation that you can use:
m + scale_y_log10()
m + scale_y_sqrt()
m + scale_y_reverse()
# You can also create your own and supply them to the trans argument.
# See ?scales::trans_new
# You can control the formatting of the labels with the formatter
# argument. Some common formats are built into the scales package:
df <- data.frame(
x = rnorm(10) * 100000,
y = seq(0, 1, length.out = 10)
)
p <- ggplot(df, aes(x, y)) + geom_point()
p + scale_y_continuous(labels = scales::percent)
p + scale_y_continuous(labels = scales::dollar)
p + scale_x_continuous(labels = scales::comma)
# Other shortcut functions
ggplot(movies, aes(rating, votes)) +
geom_point() +
ylim(1e4, 5e4)
# * axis labels
ggplot(movies, aes(rating, votes)) +
geom_point() +
labs(x = "My x axis", y = "My y axis")
# * log scaling
ggplot(movies, aes(rating, votes)) +
geom_point() +
scale_x_log10() +
scale_y_log10()
}
Run the code above in your browser using DataLab