ggplot(diamonds, aes(cut)) + stat_bin()
ggplot(diamonds, aes(cut)) + geom_bar()
# The discrete position scale is added automatically whenever you
# have a discrete position.
(d <- ggplot(subset(diamonds, carat > 1), aes(cut, clarity)) +
geom_jitter())
d + scale_x_discrete("Cut")
d + scale_x_discrete("Cut", labels = c("Fair" = "F","Good" = "G",
"Very Good" = "VG","Perfect" = "P","Ideal" = "I"))
d + scale_y_discrete("Clarity")
d + scale_x_discrete("Cut") + scale_y_discrete("Clarity")
# Use limits to adjust the which levels (and in what order)
# are displayed
d + scale_x_discrete(limits=c("Fair","Ideal"))
# you can also use the short hand functions xlim and ylim
d + xlim("Fair","Ideal", "Good")
d + ylim("I1", "IF")
# See ?reorder to reorder based on the values of another variable
ggplot(mpg, aes(manufacturer, cty)) + geom_point()
ggplot(mpg, aes(reorder(manufacturer, cty), cty)) + geom_point()
ggplot(mpg, aes(reorder(manufacturer, displ), cty)) + geom_point()
# Use abbreviate as a formatter to reduce long names
ggplot(mpg, aes(reorder(manufacturer, displ), cty)) +
geom_point() +
scale_x_discrete(labels = abbreviate)
Run the code above in your browser using DataLab