Learn R Programming

ggplot2 (version 2.1.0)

geom_crossbar: Vertical intervals: lines, crossbars & errorbars.

Description

Various ways of representing a vertical interval defined by x, ymin and ymax.

Usage

geom_crossbar(mapping = NULL, data = NULL, stat = "identity", position = "identity", ..., fatten = 2.5, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE)
geom_errorbar(mapping = NULL, data = NULL, stat = "identity", position = "identity", ..., na.rm = FALSE, show.legend = NA, inherit.aes = TRUE)
geom_linerange(mapping = NULL, data = NULL, stat = "identity", position = "identity", ..., na.rm = FALSE, show.legend = NA, inherit.aes = TRUE)
geom_pointrange(mapping = NULL, data = NULL, stat = "identity", position = "identity", ..., fatten = 4, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE)

Arguments

mapping
Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data
The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot.

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data.frame., and will be used as the layer data.

stat
The statistical transformation to use on the data for this layer, as a string.
position
Position adjustment, either as a string, or the result of a call to a position adjustment function.
...
other arguments passed on to layer. These are often aesthetics, used to set an aesthetic to a fixed value, like color = "red" or size = 3. They may also be parameters to the paired geom/stat.
fatten
A multiplicative factor used to increase the size of the middle bar in geom_crossbar() and the middle point in geom_pointrange().
na.rm
If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values.
show.legend
logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes.
inherit.aes
If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders.

Aesthetics

geom_linerange understands the following aesthetics (required aesthetics are in bold):
  • x
  • ymax
  • ymin
  • alpha
  • colour
  • linetype
  • size

See Also

stat_summary for examples of these guys in use, geom_smooth for continuous analog

Examples

Run this code
#' # Create a simple example dataset
df <- data.frame(
  trt = factor(c(1, 1, 2, 2)),
  resp = c(1, 5, 3, 4),
  group = factor(c(1, 2, 1, 2)),
  upper = c(1.1, 5.3, 3.3, 4.2),
  lower = c(0.8, 4.6, 2.4, 3.6)
)

p <- ggplot(df, aes(trt, resp, colour = group))
p + geom_linerange(aes(ymin = lower, ymax = upper))
p + geom_pointrange(aes(ymin = lower, ymax = upper))
p + geom_crossbar(aes(ymin = lower, ymax = upper), width = 0.2)
p + geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2)

# Draw lines connecting group means
p +
  geom_line(aes(group = group)) +
  geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2)

# If you want to dodge bars and errorbars, you need to manually
# specify the dodge width
p <- ggplot(df, aes(trt, resp, fill = group))
p +
 geom_bar(position = "dodge", stat = "identity") +
 geom_errorbar(aes(ymin = lower, ymax = upper), position = "dodge", width = 0.25)

# Because the bars and errorbars have different widths
# we need to specify how wide the objects we are dodging are
dodge <- position_dodge(width=0.9)
p +
  geom_bar(position = dodge, stat = "identity") +
  geom_errorbar(aes(ymin = lower, ymax = upper), position = dodge, width = 0.25)

Run the code above in your browser using DataLab