df <- data.frame(y = rt(200, df = 5))
p <- ggplot(df, aes(sample = y))
p + stat_qq()
p + geom_point(stat = "qq")
# Use fitdistr from MASS to estimate distribution params
params <- as.list(MASS::fitdistr(df$y, "t")$estimate)
ggplot(df, aes(sample = y)) +
stat_qq(distribution = qt, dparams = params["df"])
# Using to explore the distribution of a variable
ggplot(mtcars) +
stat_qq(aes(sample = mpg))
ggplot(mtcars) +
stat_qq(aes(sample = mpg, colour = factor(cyl)))
Run the code above in your browser using DataLab