Last chance! 50% off unlimited learning
Sale ends in
geom_path()
connects the observations in the order in which they appear
in the data. geom_line()
connects them in order of the variable on the
x axis. geom_step()
creates a stairstep plot, highlighting exactly
when changes occur. The group
aesthetic determines which cases are
connected together.
geom_path(mapping = NULL, data = NULL, stat = "identity",
position = "identity", ..., lineend = "butt", linejoin = "round",
linemitre = 10, arrow = NULL, na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE)geom_line(mapping = NULL, data = NULL, stat = "identity",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...)
geom_step(mapping = NULL, data = NULL, stat = "identity",
position = "identity", direction = "hv", na.rm = FALSE,
show.legend = NA, inherit.aes = TRUE, ...)
The data to be displayed in this layer. There are three options:
If NULL
, the default, the data is inherited from the plot
data as specified in the call to ggplot()
.
A data.frame
, or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
fortify()
for which variables will be created.
A function
will be called with a single argument,
the plot data. The return value must be a data.frame
, and
will be used as the layer data.
The statistical transformation to use on the data for this layer, as a string.
Position adjustment, either as a string, or the result of a call to a position adjustment function.
Other arguments passed on to layer()
. These are
often aesthetics, used to set an aesthetic to a fixed value, like
colour = "red"
or size = 3
. They may also be parameters
to the paired geom/stat.
Line end style (round, butt, square).
Line join style (round, mitre, bevel).
Line mitre limit (number greater than 1).
Arrow specification, as created by grid::arrow()
.
If FALSE
, the default, missing values are removed with
a warning. If TRUE
, missing values are silently removed.
logical. Should this layer be included in the legends?
NA
, the default, includes if any aesthetics are mapped.
FALSE
never includes, and TRUE
always includes.
It can also be a named logical vector to finely select the aesthetics to
display.
If FALSE
, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. borders()
.
direction of stairs: 'vh' for vertical then horizontal, or 'hv' for horizontal then vertical.
geom_path()
understands the following aesthetics (required aesthetics are in bold):
x
y
alpha
colour
group
linetype
size
Learn more about setting these aesthetics in vignette("ggplot2-specs")
.
geom_path()
, geom_line()
, and geom_step
handle NA
as follows:
If an NA
occurs in the middle of a line, it breaks the line. No warning
is shown, regardless of whether na.rm
is TRUE
or FALSE
.
If an NA
occurs at the start or the end of the line and na.rm
is FALSE
(default), the NA
is removed with a warning.
If an NA
occurs at the start or the end of the line and na.rm
is TRUE
,
the NA
is removed silently, without warning.
An alternative parameterisation is geom_segment()
, where each line
corresponds to a single case which provides the start and end coordinates.
geom_polygon()
: Filled paths (polygons);
geom_segment()
: Line segments
# NOT RUN {
# geom_line() is suitable for time series
ggplot(economics, aes(date, unemploy)) + geom_line()
ggplot(economics_long, aes(date, value01, colour = variable)) +
geom_line()
# geom_step() is useful when you want to highlight exactly when
# the y value changes
recent <- economics[economics$date > as.Date("2013-01-01"), ]
ggplot(recent, aes(date, unemploy)) + geom_line()
ggplot(recent, aes(date, unemploy)) + geom_step()
# geom_path lets you explore how two variables are related over time,
# e.g. unemployment and personal savings rate
m <- ggplot(economics, aes(unemploy/pop, psavert))
m + geom_path()
m + geom_path(aes(colour = as.numeric(date)))
# Changing parameters ----------------------------------------------
ggplot(economics, aes(date, unemploy)) +
geom_line(colour = "red")
# Use the arrow parameter to add an arrow to the line
# See ?arrow for more details
c <- ggplot(economics, aes(x = date, y = pop))
c + geom_line(arrow = arrow())
c + geom_line(
arrow = arrow(angle = 15, ends = "both", type = "closed")
)
# Control line join parameters
df <- data.frame(x = 1:3, y = c(4, 1, 9))
base <- ggplot(df, aes(x, y))
base + geom_path(size = 10)
base + geom_path(size = 10, lineend = "round")
base + geom_path(size = 10, linejoin = "mitre", lineend = "butt")
# You can use NAs to break the line.
df <- data.frame(x = 1:5, y = c(1, 2, NA, 4, 5))
ggplot(df, aes(x, y)) + geom_point() + geom_line()
# }
# NOT RUN {
# Setting line type vs colour/size
# Line type needs to be applied to a line as a whole, so it can
# not be used with colour or size that vary across a line
x <- seq(0.01, .99, length.out = 100)
df <- data.frame(
x = rep(x, 2),
y = c(qlogis(x), 2 * qlogis(x)),
group = rep(c("a","b"),
each = 100)
)
p <- ggplot(df, aes(x=x, y=y, group=group))
# These work
p + geom_line(linetype = 2)
p + geom_line(aes(colour = group), linetype = 2)
p + geom_line(aes(colour = x))
# But this doesn't
should_stop(p + geom_line(aes(colour = x), linetype=2))
# }
Run the code above in your browser using DataLab