Learn R Programming

ggplot2 (version 3.3.0)

fortify.lm: Supplement the data fitted to a linear model with model fit statistics.

Description

If you have missing values in your model data, you may need to refit the model with na.action = na.exclude.

Usage

# S3 method for lm
fortify(model, data = model$model, ...)

Arguments

model

linear model

data

data set, defaults to data used to fit model

...

not used by this method

Value

The original data with extra columns:

.hat

Diagonal of the hat matrix

.sigma

Estimate of residual standard deviation when corresponding observation is dropped from model

.cooksd

Cooks distance, cooks.distance()

.fitted

Fitted values of model

.resid

Residuals

.stdresid

Standardised residuals

Examples

Run this code
# NOT RUN {
mod <- lm(mpg ~ wt, data = mtcars)
head(fortify(mod))
head(fortify(mod, mtcars))

plot(mod, which = 1)

ggplot(mod, aes(.fitted, .resid)) +
  geom_point() +
  geom_hline(yintercept = 0) +
  geom_smooth(se = FALSE)

ggplot(mod, aes(.fitted, .stdresid)) +
  geom_point() +
  geom_hline(yintercept = 0) +
  geom_smooth(se = FALSE)

ggplot(fortify(mod, mtcars), aes(.fitted, .stdresid)) +
  geom_point(aes(colour = factor(cyl)))

ggplot(fortify(mod, mtcars), aes(mpg, .stdresid)) +
  geom_point(aes(colour = factor(cyl)))

plot(mod, which = 2)
ggplot(mod) +
  stat_qq(aes(sample = .stdresid)) +
  geom_abline()

plot(mod, which = 3)
ggplot(mod, aes(.fitted, sqrt(abs(.stdresid)))) +
  geom_point() +
  geom_smooth(se = FALSE)

plot(mod, which = 4)
ggplot(mod, aes(seq_along(.cooksd), .cooksd)) +
  geom_col()

plot(mod, which = 5)
ggplot(mod, aes(.hat, .stdresid)) +
  geom_vline(size = 2, colour = "white", xintercept = 0) +
  geom_hline(size = 2, colour = "white", yintercept = 0) +
  geom_point() + geom_smooth(se = FALSE)

ggplot(mod, aes(.hat, .stdresid)) +
  geom_point(aes(size = .cooksd)) +
  geom_smooth(se = FALSE, size = 0.5)

plot(mod, which = 6)
ggplot(mod, aes(.hat, .cooksd)) +
  geom_vline(xintercept = 0, colour = NA) +
  geom_abline(slope = seq(0, 3, by = 0.5), colour = "white") +
  geom_smooth(se = FALSE) +
  geom_point()

ggplot(mod, aes(.hat, .cooksd)) +
  geom_point(aes(size = .cooksd / .hat)) +
  scale_size_area()
# }

Run the code above in your browser using DataLab