Learn R Programming

ggplot2 (version 3.4.4)

stat_ellipse: Compute normal data ellipses

Description

The method for calculating the ellipses has been modified from car::dataEllipse (Fox and Weisberg 2011, Friendly and Monette 2013)

Usage

stat_ellipse(
  mapping = NULL,
  data = NULL,
  geom = "path",
  position = "identity",
  ...,
  type = "t",
  level = 0.95,
  segments = 51,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)

Arguments

mapping

Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. ~ head(.x, 10)).

geom

The geometric object to use to display the data, either as a ggproto Geom subclass or as a string naming the geom stripped of the geom_ prefix (e.g. "point" rather than "geom_point")

position

Position adjustment, either as a string naming the adjustment (e.g. "jitter" to use position_jitter), or the result of a call to a position adjustment function. Use the latter if you need to change the settings of the adjustment.

...

Other arguments passed on to layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or size = 3. They may also be parameters to the paired geom/stat.

type

The type of ellipse. The default "t" assumes a multivariate t-distribution, and "norm" assumes a multivariate normal distribution. "euclid" draws a circle with the radius equal to level, representing the euclidean distance from the center. This ellipse probably won't appear circular unless coord_fixed() is applied.

level

The level at which to draw an ellipse, or, if type="euclid", the radius of the circle to be drawn.

segments

The number of segments to be used in drawing the ellipse.

na.rm

If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

show.legend

logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes

If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

References

John Fox and Sanford Weisberg (2011). An R Companion to Applied Regression, Second Edition. Thousand Oaks CA: Sage. URL: https://socialsciences.mcmaster.ca/jfox/Books/Companion/

Michael Friendly. Georges Monette. John Fox. "Elliptical Insights: Understanding Statistical Methods through Elliptical Geometry." Statist. Sci. 28 (1) 1 - 39, February 2013. URL: https://projecteuclid.org/journals/statistical-science/volume-28/issue-1/Elliptical-Insights-Understanding-Statistical-Methods-through-Elliptical-Geometry/10.1214/12-STS402.full

Examples

Run this code
ggplot(faithful, aes(waiting, eruptions)) +
  geom_point() +
  stat_ellipse()

ggplot(faithful, aes(waiting, eruptions, color = eruptions > 3)) +
  geom_point() +
  stat_ellipse()

ggplot(faithful, aes(waiting, eruptions, color = eruptions > 3)) +
  geom_point() +
  stat_ellipse(type = "norm", linetype = 2) +
  stat_ellipse(type = "t")

ggplot(faithful, aes(waiting, eruptions, color = eruptions > 3)) +
  geom_point() +
  stat_ellipse(type = "norm", linetype = 2) +
  stat_ellipse(type = "euclid", level = 3) +
  coord_fixed()

ggplot(faithful, aes(waiting, eruptions, fill = eruptions > 3)) +
  stat_ellipse(geom = "polygon")

Run the code above in your browser using DataLab