# \donttest{
# See ?geom_boxplot for other examples
# Three ways of doing transformation in ggplot:
# * by transforming the data
ggplot(diamonds, aes(log10(carat), log10(price))) +
geom_point()
# * by transforming the scales
ggplot(diamonds, aes(carat, price)) +
geom_point() +
scale_x_log10() +
scale_y_log10()
# * by transforming the coordinate system:
ggplot(diamonds, aes(carat, price)) +
geom_point() +
coord_trans(x = "log10", y = "log10")
# The difference between transforming the scales and
# transforming the coordinate system is that scale
# transformation occurs BEFORE statistics, and coordinate
# transformation afterwards. Coordinate transformation also
# changes the shape of geoms:
d <- subset(diamonds, carat > 0.5)
ggplot(d, aes(carat, price)) +
geom_point() +
geom_smooth(method = "lm") +
scale_x_log10() +
scale_y_log10()
ggplot(d, aes(carat, price)) +
geom_point() +
geom_smooth(method = "lm") +
coord_trans(x = "log10", y = "log10")
# Here I used a subset of diamonds so that the smoothed line didn't
# drop below zero, which obviously causes problems on the log-transformed
# scale
# With a combination of scale and coordinate transformation, it's
# possible to do back-transformations:
ggplot(diamonds, aes(carat, price)) +
geom_point() +
geom_smooth(method = "lm") +
scale_x_log10() +
scale_y_log10() +
coord_trans(x = scales::transform_exp(10), y = scales::transform_exp(10))
# cf.
ggplot(diamonds, aes(carat, price)) +
geom_point() +
geom_smooth(method = "lm")
# Also works with discrete scales
set.seed(1)
df <- data.frame(a = abs(rnorm(26)),letters)
plot <- ggplot(df,aes(a,letters)) + geom_point()
plot + coord_trans(x = "log10")
plot + coord_trans(x = "sqrt")
# }
Run the code above in your browser using DataLab