# generate artificial data
set.seed(4321)
x <- 1:100
y <- (x + x^2 + x^3) + rnorm(length(x), mean = 0, sd = mean(x^3) / 4)
my.data <- data.frame(x = x,
y = y * 1e-5,
group = c("A", "B"),
y2 = y * 1e-5 + c(2, 0))
# give a name to a formula
formula <- y ~ poly(x, 3, raw = TRUE)
ggplot(my.data, aes(x, y2, colour = group)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(use_label(c("eq", "F")), formula = formula)
ggplot(my.data, aes(x, y2, colour = group)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(use_label(c("R2", "F"), sep = "*\" with \"*"),
formula = formula)
ggplot(my.data, aes(x, y2, colour = group)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(use_label(c("eq", "adj.R2", "n")), formula = formula)
ggplot(my.data, aes(x, y2, colour = group)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(use_label(c("F", "P", "AIC", "BIC")), formula = formula)
ggplot(my.data, aes(x, y)) +
stat_quant_band(formula = formula) +
stat_quant_eq(use_label(c("eq", "n")), formula = formula) +
geom_point()
ggplot(my.data, aes(x, y)) +
stat_ma_line() +
stat_ma_eq(use_label(c("eq", "n"))) +
geom_point()
ggplot(my.data, aes(x, y)) +
stat_correlation(use_label(c("r", "t", "p"))) +
geom_point()
# pass additional mappings if desired
ggplot(my.data, aes(x, y2)) +
geom_point(aes(colour = group)) +
stat_poly_line(aes(colour = group), formula = formula) +
stat_poly_eq(use_label(c("eq", "F"), aes(grp.label = group)), formula = formula)
Run the code above in your browser using DataLab