# generate artificial data
set.seed(98723)
my.data <- data.frame(x = rnorm(100) + (0:99) / 10 - 5,
y = rnorm(100) + (0:99) / 10 - 5,
group = c("A", "B"))
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line()
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(method = "MA")
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(method = "SMA")
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(method = "RMA",
range.y = "interval", range.x = "interval")
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(method = "OLS")
# plot line to the ends of range of data (the default)
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(fullrange = FALSE) +
expand_limits(x = c(-10, 10), y = c(-10, 10))
# plot line to the limits of the scales
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(fullrange = TRUE) +
expand_limits(x = c(-10, 10), y = c(-10, 10))
# plot line to the limits of the scales
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(orientation = "y", fullrange = TRUE) +
expand_limits(x = c(-10, 10), y = c(-10, 10))
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(formula = x ~ y)
# Smooths are automatically fit to each group (defined by categorical
# aesthetics or the group aesthetic) and for each facet.
ggplot(my.data, aes(x, y, colour = group)) +
geom_point() +
stat_ma_line()
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line() +
facet_wrap(~group)
# Inspecting the returned data using geom_debug()
gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)
if (gginnards.installed)
library(gginnards)
if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
stat_ma_line(geom = "debug")
if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
stat_ma_line(geom = "debug", fm.values = TRUE)
Run the code above in your browser using DataLab