# NOT RUN {
library(ggplot2)
library(dplyr)
library(ggpointdensity)
# generate some toy data
dat <- bind_rows(
tibble(x = rnorm(7000, sd = 1),
y = rnorm(7000, sd = 10),
group = "foo"),
tibble(x = rnorm(3000, mean = 1, sd = .5),
y = rnorm(3000, mean = 7, sd = 5),
group = "bar"))
# plot it with geom_pointdensity()
ggplot(data = dat, mapping = aes(x = x, y = y)) +
geom_pointdensity()
# adjust the smoothing bandwidth,
# i.e. the radius around the points
# in which neighbors are counted
ggplot(data = dat, mapping = aes(x = x, y = y)) +
geom_pointdensity(adjust = .1)
ggplot(data = dat, mapping = aes(x = x, y = y)) +
geom_pointdensity(adjust = 4)
# I recommend the viridis package
# for a more useful color scale
library(viridis)
ggplot(data = dat, mapping = aes(x = x, y = y)) +
geom_pointdensity() +
scale_color_viridis()
# Of course you can combine the geom with standard
# ggplot2 features such as facets...
ggplot(data = dat, mapping = aes(x = x, y = y)) +
geom_pointdensity() +
scale_color_viridis() +
facet_wrap( ~ group)
# ... or point shape and size:
dat_subset <- sample_frac(dat, .1) # smaller data set
ggplot(data = dat_subset, mapping = aes(x = x, y = y)) +
geom_pointdensity(size = 3, shape = 17) +
scale_color_viridis()
# Zooming into the axis works as well, keep in mind
# that xlim() and ylim() change the density since they
# remove data points.
# It may be better to use `coord_cartesian()` instead.
ggplot(data = dat, mapping = aes(x = x, y = y)) +
geom_pointdensity() +
scale_color_viridis() +
xlim(c(-1, 3)) + ylim(c(-5, 15))
ggplot(data = dat, mapping = aes(x = x, y = y)) +
geom_pointdensity() +
scale_color_viridis() +
coord_cartesian(xlim = c(-1, 3), ylim = c(-5, 15))
# }
Run the code above in your browser using DataLab