Learn R Programming

⚠️There's a newer version (0.6.0) of this package.Take me there.

ggpubr: 'ggplot2' Based Publication Ready Plots

ggplot2, by Hadley Wickham, is an excellent and flexible package for elegant data visualization in R. However the default generated plots requires some formatting before we can send them for publication. Furthermore, to customize a ggplot, the syntax is opaque and this raises the level of difficulty for researchers with no advanced R programming skills.

The 'ggpubr' package provides some easy-to-use functions for creating and customizing 'ggplot2'- based publication ready plots.

Find out more at https://rpkgs.datanovia.com/ggpubr.

Installation and loading

  • Install from CRAN as follow:
install.packages("ggpubr")
  • Or, install the latest version from GitHub as follow:
# Install
if(!require(devtools)) install.packages("devtools")
devtools::install_github("kassambara/ggpubr")

Distribution

library(ggpubr)
#> Loading required package: ggplot2
#> Loading required package: magrittr
# Create some data format
# :::::::::::::::::::::::::::::::::::::::::::::::::::
set.seed(1234)
wdata = data.frame(
   sex = factor(rep(c("F", "M"), each=200)),
   weight = c(rnorm(200, 55), rnorm(200, 58)))
head(wdata, 4)
#>   sex   weight
#> 1   F 53.79293
#> 2   F 55.27743
#> 3   F 56.08444
#> 4   F 52.65430

# Density plot with mean lines and marginal rug
# :::::::::::::::::::::::::::::::::::::::::::::::::::
# Change outline and fill colors by groups ("sex")
# Use custom palette
ggdensity(wdata, x = "weight",
   add = "mean", rug = TRUE,
   color = "sex", fill = "sex",
   palette = c("#00AFBB", "#E7B800"))

# Histogram plot with mean lines and marginal rug
# :::::::::::::::::::::::::::::::::::::::::::::::::::
# Change outline and fill colors by groups ("sex")
# Use custom color palette
gghistogram(wdata, x = "weight",
   add = "mean", rug = TRUE,
   color = "sex", fill = "sex",
   palette = c("#00AFBB", "#E7B800"))

Box plots and violin plots

# Load data
data("ToothGrowth")
df <- ToothGrowth
head(df, 4)
#>    len supp dose
#> 1  4.2   VC  0.5
#> 2 11.5   VC  0.5
#> 3  7.3   VC  0.5
#> 4  5.8   VC  0.5

# Box plots with jittered points
# :::::::::::::::::::::::::::::::::::::::::::::::::::
# Change outline colors by groups: dose
# Use custom color palette
# Add jitter points and change the shape by groups
 p <- ggboxplot(df, x = "dose", y = "len",
                color = "dose", palette =c("#00AFBB", "#E7B800", "#FC4E07"),
                add = "jitter", shape = "dose")
 p

 
 # Add p-values comparing groups
 # Specify the comparisons you want
my_comparisons <- list( c("0.5", "1"), c("1", "2"), c("0.5", "2") )
p + stat_compare_means(comparisons = my_comparisons)+ # Add pairwise comparisons p-value
  stat_compare_means(label.y = 50)                   # Add global p-value


 
# Violin plots with box plots inside
# :::::::::::::::::::::::::::::::::::::::::::::::::::
# Change fill color by groups: dose
# add boxplot with white fill color
ggviolin(df, x = "dose", y = "len", fill = "dose",
         palette = c("#00AFBB", "#E7B800", "#FC4E07"),
         add = "boxplot", add.params = list(fill = "white"))+
  stat_compare_means(comparisons = my_comparisons, label = "p.signif")+ # Add significance levels
  stat_compare_means(label.y = 50)                                      # Add global the p-value 

Bar plots

Demo data set

Load and prepare data:

# Load data
data("mtcars")
dfm <- mtcars
# Convert the cyl variable to a factor
dfm$cyl <- as.factor(dfm$cyl)
# Add the name colums
dfm$name <- rownames(dfm)
# Inspect the data
head(dfm[, c("name", "wt", "mpg", "cyl")])
#>                                name    wt  mpg cyl
#> Mazda RX4                 Mazda RX4 2.620 21.0   6
#> Mazda RX4 Wag         Mazda RX4 Wag 2.875 21.0   6
#> Datsun 710               Datsun 710 2.320 22.8   4
#> Hornet 4 Drive       Hornet 4 Drive 3.215 21.4   6
#> Hornet Sportabout Hornet Sportabout 3.440 18.7   8
#> Valiant                     Valiant 3.460 18.1   6

Ordered bar plots

Change the fill color by the grouping variable "cyl". Sorting will be done globally, but not by groups.

ggbarplot(dfm, x = "name", y = "mpg",
          fill = "cyl",               # change fill color by cyl
          color = "white",            # Set bar border colors to white
          palette = "jco",            # jco journal color palett. see ?ggpar
          sort.val = "desc",          # Sort the value in dscending order
          sort.by.groups = FALSE,     # Don't sort inside each group
          x.text.angle = 90           # Rotate vertically x axis texts
          )

Sort bars inside each group. Use the argument sort.by.groups = TRUE.

ggbarplot(dfm, x = "name", y = "mpg",
          fill = "cyl",               # change fill color by cyl
          color = "white",            # Set bar border colors to white
          palette = "jco",            # jco journal color palett. see ?ggpar
          sort.val = "asc",           # Sort the value in dscending order
          sort.by.groups = TRUE,      # Sort inside each group
          x.text.angle = 90           # Rotate vertically x axis texts
          )

Deviation graphs

The deviation graph shows the deviation of quantitatives values to a reference value. In the R code below, we'll plot the mpg z-score from the mtcars dataset.

Calculate the z-score of the mpg data:

# Calculate the z-score of the mpg data
dfm$mpg_z <- (dfm$mpg -mean(dfm$mpg))/sd(dfm$mpg)
dfm$mpg_grp <- factor(ifelse(dfm$mpg_z < 0, "low", "high"), 
                     levels = c("low", "high"))
# Inspect the data
head(dfm[, c("name", "wt", "mpg", "mpg_z", "mpg_grp", "cyl")])
#>                                name    wt  mpg      mpg_z mpg_grp cyl
#> Mazda RX4                 Mazda RX4 2.620 21.0  0.1508848    high   6
#> Mazda RX4 Wag         Mazda RX4 Wag 2.875 21.0  0.1508848    high   6
#> Datsun 710               Datsun 710 2.320 22.8  0.4495434    high   4
#> Hornet 4 Drive       Hornet 4 Drive 3.215 21.4  0.2172534    high   6
#> Hornet Sportabout Hornet Sportabout 3.440 18.7 -0.2307345     low   8
#> Valiant                     Valiant 3.460 18.1 -0.3302874     low   6

Create an ordered barplot, colored according to the level of mpg:

ggbarplot(dfm, x = "name", y = "mpg_z",
          fill = "mpg_grp",           # change fill color by mpg_level
          color = "white",            # Set bar border colors to white
          palette = "jco",            # jco journal color palett. see ?ggpar
          sort.val = "asc",           # Sort the value in ascending order
          sort.by.groups = FALSE,     # Don't sort inside each group
          x.text.angle = 90,          # Rotate vertically x axis texts
          ylab = "MPG z-score",
          xlab = FALSE,
          legend.title = "MPG Group"
          )

Rotate the plot: use rotate = TRUE and sort.val = "desc"

ggbarplot(dfm, x = "name", y = "mpg_z",
          fill = "mpg_grp",           # change fill color by mpg_level
          color = "white",            # Set bar border colors to white
          palette = "jco",            # jco journal color palett. see ?ggpar
          sort.val = "desc",          # Sort the value in descending order
          sort.by.groups = FALSE,     # Don't sort inside each group
          x.text.angle = 90,          # Rotate vertically x axis texts
          ylab = "MPG z-score",
          legend.title = "MPG Group",
          rotate = TRUE,
          ggtheme = theme_minimal()
          )

Dot charts

Lollipop chart

Lollipop chart is an alternative to bar plots, when you have a large set of values to visualize.

Lollipop chart colored by the grouping variable "cyl":

ggdotchart(dfm, x = "name", y = "mpg",
           color = "cyl",                                # Color by groups
           palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
           sorting = "ascending",                        # Sort value in descending order
           add = "segments",                             # Add segments from y = 0 to dots
           ggtheme = theme_pubr()                        # ggplot2 theme
           )

  • Sort in decending order. sorting = "descending".
  • Rotate the plot vertically, using rotate = TRUE.
  • Sort the mpg value inside each group by using group = "cyl".
  • Set dot.size to 6.
  • Add mpg values as label. label = "mpg" or label = round(dfm$mpg).
ggdotchart(dfm, x = "name", y = "mpg",
           color = "cyl",                                # Color by groups
           palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
           sorting = "descending",                       # Sort value in descending order
           add = "segments",                             # Add segments from y = 0 to dots
           rotate = TRUE,                                # Rotate vertically
           group = "cyl",                                # Order by groups
           dot.size = 6,                                 # Large dot size
           label = round(dfm$mpg),                        # Add mpg values as dot labels
           font.label = list(color = "white", size = 9, 
                             vjust = 0.5),               # Adjust label parameters
           ggtheme = theme_pubr()                        # ggplot2 theme
           )

Deviation graph:

  • Use y = "mpg_z"
  • Change segment color and size: add.params = list(color = "lightgray", size = 2)
ggdotchart(dfm, x = "name", y = "mpg_z",
           color = "cyl",                                # Color by groups
           palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
           sorting = "descending",                       # Sort value in descending order
           add = "segments",                             # Add segments from y = 0 to dots
           add.params = list(color = "lightgray", size = 2), # Change segment color and size
           group = "cyl",                                # Order by groups
           dot.size = 6,                                 # Large dot size
           label = round(dfm$mpg_z,1),                        # Add mpg values as dot labels
           font.label = list(color = "white", size = 9, 
                             vjust = 0.5),               # Adjust label parameters
           ggtheme = theme_pubr()                        # ggplot2 theme
           )+
  geom_hline(yintercept = 0, linetype = 2, color = "lightgray")

Cleveland's dot plot

Color y text by groups. Use y.text.col = TRUE.

ggdotchart(dfm, x = "name", y = "mpg",
           color = "cyl",                                # Color by groups
           palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
           sorting = "descending",                       # Sort value in descending order
           rotate = TRUE,                                # Rotate vertically
           dot.size = 2,                                 # Large dot size
           y.text.col = TRUE,                            # Color y text by groups
           ggtheme = theme_pubr()                        # ggplot2 theme
           )+
  theme_cleveland()                                      # Add dashed grids

More

Find out more at https://rpkgs.datanovia.com/ggpubr.

Blog posts

Copy Link

Version

Install

install.packages('ggpubr')

Monthly Downloads

214,087

Version

0.4.0

License

GPL-2

Last Published

June 27th, 2020

Functions in ggpubr (0.4.0)

axis_scale

Change Axis Scale: log2, log10 and more
as_ggplot

Storing grid.arrange() arrangeGrob() and plots
create_aes

Create Aes Mapping from a List
desc_statby

Descriptive statistics by groups
facet

Facet a ggplot into Multiple Panels
compare_means

Comparison of Means
border

Set ggplot Panel Border Line
diff_express

Differential gene expression analysis results
stat_bracket

Add Brackets with Labels to a GGPlot
background_image

Add Background Image to ggplot2
bgcolor

Change ggplot Panel Background Color
geom_exec

Execute ggplot2 functions
add_summary

Add Summary Statistics onto a ggplot.
font

Change the Appearance of Titles and Axis Labels
gene_citation

Gene Citation Index
annotate_figure

Annotate Arranged Figure
get_breaks

Easy Break Creation for Numeric Axes
ggdensity

Density plot
ggboxplot

Box plot
geom_signif

geom_signif exported from ggsignif package
ggdotplot

Dot plot
ggecdf

Empirical cumulative density function
ggballoonplot

Ballon plot
get_legend

Extract Legends from a ggplot object
ggdotchart

Cleveland's Dot Plots
ggdonutchart

Donut chart
ggbarplot

Bar plot
get_palette

Generate Color Palettes
ggadd

Add Summary Statistics or a Geom onto a ggplot
ggpubr_args

ggpubr General Arguments Description
ggpie

Pie chart
ggarrange

Arrange Multiple ggplots
ggpaired

Plot Paired Data
ggmaplot

MA-plot from means and log fold changes
grids

Add Grids to a ggplot
gradient_color

Set Gradient Color
ggscatterhist

Scatter Plot with Marginal Histograms
ggstripchart

Stripcharts
ggparagraph

Draw a Paragraph of Text
ggpar

Graphical parameters
rotate_axis_text

Rotate Axes Text
rotate

Rotate a ggplot Horizontally
%>%

Pipe operator
ggsummarytable

GGPLOT with Summary Stats Table Under the Plot
text_grob

Create a Text Graphical object
ggerrorplot

Visualizing Error
ggexport

Export ggplots
ggqqplot

QQ Plots
ggscatter

Scatter plot
reexports

Objects exported from other packages
ggtext

Text
stat_stars

Add Stars to a Scatter Plot
stat_regline_equation

Add Regression Line Equation and R-Square to a GGPLOT.
rremove

Remove a ggplot Component
ggline

Line plot
gghistogram

Histogram plot
stat_compare_means

Add Mean Comparison P-values to a ggplot
show_point_shapes

Point shapes available in R
show_line_types

Line types available in R
stat_conf_ellipse

Plot confidence ellipses.
set_palette

Set Color Palette
ggviolin

Violin plot
ggtexttable

Draw a Textual Table
theme_pubr

Publication ready theme
stat_central_tendency

Add Central Tendency Measures to a GGPLot
stat_cor

Add Correlation Coefficients with P-values to a Scatter Plot
stat_chull

Plot convex hull of a set of points
stat_mean

Draw group mean points
stat_pvalue_manual

Add Manually P-values to a ggplot
theme_transparent

Create a ggplot with Transparent Background
stat_overlay_normal_density

Overlay Normal Density Plot