# Define color palette
my_cols <- c("#0D0887FF", "#6A00A8FF", "#B12A90FF",
"#E16462FF", "#FCA636FF", "#F0F921FF")
# Standard contingency table
#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Read a contingency table: housetasks
# Repartition of 13 housetasks in the couple
data <- read.delim(
system.file("demo-data/housetasks.txt", package = "ggpubr"),
row.names = 1
)
data
# Basic ballon plot
ggballoonplot(data)
# Change color and fill
ggballoonplot(data, color = "#0073C2FF", fill = "#0073C2FF")
# Change color according to the value of table cells
ggballoonplot(data, fill = "value")+
scale_fill_gradientn(colors = my_cols)
# Change the plotting symbol shape
ggballoonplot(data, fill = "value", shape = 23)+
gradient_fill(c("blue", "white", "red"))
# Set points size to 8, but change fill color by values
# Sow labels
ggballoonplot(data, fill = "value", color = "lightgray",
size = 10, show.label = TRUE)+
gradient_fill(c("blue", "white", "red"))
# Streched contingency table
#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Create an Example Data Frame Containing Car x Color data
carnames <- c("bmw","renault","mercedes","seat")
carcolors <- c("red","white","silver","green")
datavals <- round(rnorm(16, mean=100, sd=60),1)
car_data <- data.frame(Car = rep(carnames,4),
Color = rep(carcolors, c(4,4,4,4) ),
Value=datavals )
car_data
ggballoonplot(car_data, x = "Car", y = "Color",
size = "Value", fill = "Value") +
scale_fill_gradientn(colors = my_cols) +
guides(size = FALSE)
# Grouped frequency table
#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
data("Titanic")
dframe <- as.data.frame(Titanic)
head(dframe)
ggballoonplot(
dframe, x = "Class", y = "Sex",
size = "Freq", fill = "Freq",
facet.by = c("Survived", "Age"),
ggtheme = theme_bw()
)+
scale_fill_gradientn(colors = my_cols)
# Hair and Eye Color of Statistics Students
data(HairEyeColor)
ggballoonplot( as.data.frame(HairEyeColor),
x = "Hair", y = "Eye", size = "Freq",
ggtheme = theme_gray()) %>%
facet("Sex")
Run the code above in your browser using DataLab