# NOT RUN {
# We'll start with igraph
require(igraph)
gr <- graph_from_data_frame(flare$edges, vertices = flare$vertices)
# Set depth and a class based on the name of the 2nd level node name
gr <- tree_apply(gr, function(node, parent, depth, tree) {
tree <- set_vertex_attr(tree, 'depth', node, depth)
if (depth == 1) {
tree <- set_vertex_attr(tree, 'Class', node, V(tree)$shortName[node])
} else if (depth > 1) {
tree <- set_vertex_attr(tree, 'Class', node, V(tree)$Class[parent])
}
tree
})
# For dendrograms it's slightly different
irisDen <- as.dendrogram(hclust(dist(iris[1:4], method='euclidean'),
method='ward.D2'))
# Add the species information to the leafs
irisDen <- dendrapply(irisDen, function(d) {
if(is.leaf(d))
attr(d, 'nodePar') <- list(species=iris[as.integer(attr(d, 'label')),5])
d
})
# Set class of node to the class of it's children they are of equal class
irisDen <- tree_apply(irisDen, function(node, children, ...) {
if (is.leaf(node)) {
attr(node, 'Class') <- attr(node, 'nodePar')$species
} else {
classes <- unique(sapply(children, attr, which = 'Class'))
if (length(classes) == 1 && !anyNA(classes)) {
attr(node, 'Class') <- classes
} else {
attr(node, 'Class') <- NA
}
}
node
}, direction = 'up')
# }
Run the code above in your browser using DataLab