This layout puts all nodes on a diagonal, thus preparing the layout for use
with geom_edge_point()
resulting in a matrix layout. While matrix
layouts excel in scalability, the interpretation of the visual is very
dependent on the sorting of the nodes. Different sorting algorithms have been
implemented in tidygraph
and these can be used directly. Behrisch
et al. (2016) have provided a nice overview of some of the different
sorting algorithms and what insight they might bring, along with a rundown of
different patterns to look out for.
layout_tbl_graph_matrix(graph, circular = FALSE, sort.by = NULL)
A data.frame with the columns x
, y
, circular
as
well as any information stored as node variables in the tbl_graph object.
An tbl_graph
object
Ignored
An expression providing the sorting of the nodes. If NULL
the nodes will be ordered by their index in the graph.
Behrisch, M., Bach, B., Riche, N. H., Schreck, T., Fekete, J.-D. (2016). Matrix Reordering Methods for Table and Network Visualization. Computer Graphics Forum, 35: 693–716. tools:::Rd_expr_doi("10.1111/cgf.12935")
Other layout_tbl_graph_*:
layout_tbl_graph_auto()
,
layout_tbl_graph_backbone()
,
layout_tbl_graph_cactustree()
,
layout_tbl_graph_centrality()
,
layout_tbl_graph_circlepack()
,
layout_tbl_graph_dendrogram()
,
layout_tbl_graph_eigen()
,
layout_tbl_graph_fabric()
,
layout_tbl_graph_focus()
,
layout_tbl_graph_hive()
,
layout_tbl_graph_htree()
,
layout_tbl_graph_igraph()
,
layout_tbl_graph_linear()
,
layout_tbl_graph_manual()
,
layout_tbl_graph_metro()
,
layout_tbl_graph_partition()
,
layout_tbl_graph_pmds()
,
layout_tbl_graph_sf()
,
layout_tbl_graph_stress()
,
layout_tbl_graph_treemap()
,
layout_tbl_graph_unrooted()