Learn R Programming

ggstatsplot (version 0.12.4)

grouped_ggcorrmat: Visualization of a correlalogram (or correlation matrix) for all levels of a grouping variable

Description

Helper function for ggstatsplot::ggcorrmat() to apply this function across multiple levels of a given factor and combining the resulting plots using ggstatsplot::combine_plots().

Usage

grouped_ggcorrmat(
  data,
  ...,
  grouping.var,
  plotgrid.args = list(),
  annotation.args = list()
)

Arguments

data

A data frame from which variables specified are to be taken.

...

Arguments passed on to ggcorrmat

cor.vars

List of variables for which the correlation matrix is to be computed and visualized. If NULL (default), all numeric variables from data will be used.

cor.vars.names

Optional list of names to be used for cor.vars. The names should be entered in the same order.

partial

Can be TRUE for partial correlations. For Bayesian partial correlations, "full" instead of pseudo-Bayesian partial correlations (i.e., Bayesian correlation based on frequentist partialization) are returned.

matrix.type

Character, "upper" (default), "lower", or "full", display full matrix, lower triangular or upper triangular matrix.

sig.level

Significance level (Default: 0.05). If the p-value in p-value matrix is bigger than sig.level, then the corresponding correlation coefficient is regarded as insignificant and flagged as such in the plot.

colors

A vector of 3 colors for low, mid, and high correlation values. If set to NULL, manual specification of colors will be turned off and 3 colors from the specified palette from package will be selected.

pch

Decides the point shape to be used for insignificant correlation coefficients (only valid when insig = "pch"). Default: pch = "cross".

ggcorrplot.args

A list of additional (mostly aesthetic) arguments that will be passed to ggcorrplot::ggcorrplot() function. The list should avoid any of the following arguments since they are already internally being used: corr, method, p.mat, sig.level, ggtheme, colors, lab, pch, legend.title, digits.

type

A character specifying the type of statistical approach:

  • "parametric"

  • "nonparametric"

  • "robust"

  • "bayes"

You can specify just the initial letter.

digits

Number of digits for rounding or significant figures. May also be "signif" to return significant figures or "scientific" to return scientific notation. Control the number of digits by adding the value as suffix, e.g. digits = "scientific4" to have scientific notation with 4 decimal places, or digits = "signif5" for 5 significant figures (see also signif()).

conf.level

Scalar between 0 and 1 (default: 95% confidence/credible intervals, 0.95). If NULL, no confidence intervals will be computed.

tr

Trim level for the mean when carrying out robust tests. In case of an error, try reducing the value of tr, which is by default set to 0.2. Lowering the value might help.

bf.prior

A number between 0.5 and 2 (default 0.707), the prior width to use in calculating Bayes factors and posterior estimates. In addition to numeric arguments, several named values are also recognized: "medium", "wide", and "ultrawide", corresponding to r scale values of 1/2, sqrt(2)/2, and 1, respectively. In case of an ANOVA, this value corresponds to scale for fixed effects.

p.adjust.method

Adjustment method for p-values for multiple comparisons. Possible methods are: "holm" (default), "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".

subtitle

The text for the plot subtitle. Will work only if results.subtitle = FALSE.

caption

The text for the plot caption. This argument is relevant only if bf.message = FALSE.

ggplot.component

A ggplot component to be added to the plot prepared by {ggstatsplot}. This argument is primarily helpful for grouped_ variants of all primary functions. Default is NULL. The argument should be entered as a {ggplot2} function or a list of {ggplot2} functions.

package,palette

Name of the package from which the given palette is to be extracted. The available palettes and packages can be checked by running View(paletteer::palettes_d_names).

ggtheme

A {ggplot2} theme. Default value is ggstatsplot::theme_ggstatsplot(). Any of the {ggplot2} themes (e.g., theme_bw()), or themes from extension packages are allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). But note that sometimes these themes will remove some of the details that {ggstatsplot} plots typically contains. For example, if relevant, ggbetweenstats() shows details about multiple comparison test as a label on the secondary Y-axis. Some themes (e.g. ggthemes::theme_fivethirtyeight()) will remove the secondary Y-axis and thus the details as well.

grouping.var

A single grouping variable.

plotgrid.args

A list of additional arguments passed to patchwork::wrap_plots(), except for guides argument which is already separately specified here.

annotation.args

A list of additional arguments passed to patchwork::plot_annotation().

Details

For details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html

See Also

ggcorrmat, ggscatterstats, grouped_ggscatterstats

Examples

Run this code
set.seed(123)

grouped_ggcorrmat(
  data = iris,
  grouping.var = Species,
  type = "robust",
  p.adjust.method = "holm",
  plotgrid.args = list(ncol = 1L),
  annotation.args = list(tag_levels = "i")
)

Run the code above in your browser using DataLab