Perform a maximum likelihood estimation of the parameters of a multivariate generalized hyperbolic distribution by using an Expectation Maximization (EM) based algorithm.
fit.ghypmv(data, lambda = 1, alpha.bar = 1, mu = NULL, sigma = NULL,
gamma = NULL, opt.pars = c(lambda = TRUE, alpha.bar = TRUE, mu = TRUE,
sigma = TRUE, gamma = !symmetric),
symmetric = FALSE, standardize = FALSE, nit = 2000, reltol = 1e-8,
abstol = reltol * 10, na.rm = FALSE, silent = FALSE, save.data = TRUE,
trace = TRUE, ...)fit.hypmv(data,
opt.pars = c(alpha.bar = TRUE, mu = TRUE, sigma = TRUE, gamma = !symmetric),
symmetric = FALSE, ...)
fit.NIGmv(data,
opt.pars = c(alpha.bar = TRUE, mu = TRUE, sigma = TRUE, gamma = !symmetric),
symmetric = FALSE, ...)
fit.VGmv(data, lambda = 1,
opt.pars = c(lambda = TRUE, mu = TRUE, sigma = TRUE, gamma = !symmetric),
symmetric = FALSE, ...)
fit.tmv(data, nu = 3.5,
opt.pars = c(lambda = TRUE, mu = TRUE, sigma = TRUE, gamma = !symmetric),
symmetric = FALSE, ...)
fit.gaussmv(data, na.rm = TRUE, save.data = TRUE)
An object of class mle.ghyp
.
An object coercible to a matrix
.
Starting value for the shape parameter lambda
.
Starting value for the shape parameter alpha.bar
.
Starting value for the shape parameter nu
(only used
in case of a student-t distribution. It determines the
degree of freedom and is defined as -2*lambda
.)
Starting value for the location parameter mu
.
Starting value for the dispersion matrix sigma
.
Starting value for the skewness vecotr gamma
.
A named logical vector
which states which parameters should be fitted.
If TRUE
the skewness parameter gamma
keeps zero.
If TRUE
the sample will be standardized
before fitting. Afterwards, the parameters and
log-likelihood et cetera will be back-transformed.
If TRUE
data
will be stored within the
mle.ghyp
object
(cf. ghyp.data
).
If TRUE
the evolution of the parameter values
during the fitting procedure will be traced and stored
(cf. ghyp.fit.info
).
If TRUE
missing values will be removed from data
.
If TRUE
no prompts will appear in the console.
Maximal number of iterations of the expectation maximation algorithm.
Relative convergence tolerance.
Absolute convergence tolerance.
Arguments passed to optim
and to fit.ghypmv
when
fitting special cases of the generalized hyperbolic distribution.
Wolfgang Breymann, David Luethi
This function uses a modified EM algorithm which is called Multi-Cycle
Expectation Conditional Maximization (MCECM) algorithm. This algorithm
is sketched in the vignette of this package which can be found in the
doc
folder. A more detailed description is provided by the book
Quantitative Risk Management, Concepts, Techniques and Tools
(see “References”).
The general-purpose optimization routine optim
is used
to maximize the loglikelihood function of the univariate mixing
distribution. The default method is that of Nelder and Mead which
uses only function values. Parameters of optim
can be
passed via the ... argument of the fitting routines.
Alexander J. McNeil, Ruediger Frey, Paul Embrechts (2005)
Quantitative Risk Management, Concepts, Techniques and Tools
ghyp
-package vignette in the doc
folder or on
https://cran.r-project.org/package=ghyp.
S-Plus and R library QRMlib)
fit.ghypuv
, fit.hypuv
,
fit.NIGuv
, fit.VGuv
,
fit.tuv
for univariate fitting routines.
ghyp.fit.info
for information regarding the
fitting procedure.
data(smi.stocks)
fit.ghypmv(data = smi.stocks, opt.pars = c(lambda = FALSE), lambda = 2,
control = list(rel.tol = 1e-5, abs.tol = 1e-5), reltol = 0.01)
Run the code above in your browser using DataLab