## alpha.bar parametrization of a univariate GH distribution
ghyp(lambda=2, alpha.bar=0.1, mu=0, sigma=1, gamma=0)
## lambda/chi parametrization of a univariate GH distribution
ghyp(lambda=2, chi=1, psi=0.5, mu=0, sigma=1, gamma=0)
## alpha/delta parametrization of a univariate GH distribution
ghyp.ad(lambda=2, alpha=0.5, delta=1, mu=0, beta=0)
## alpha.bar parametrization of a multivariate GH distribution
ghyp(lambda=1, alpha.bar=0.1, mu=2:3, sigma=diag(1:2), gamma=0:1)
## lambda/chi parametrization of a multivariate GH distribution
ghyp(lambda=1, chi=1, psi=0.5, mu=2:3, sigma=diag(1:2), gamma=0:1)
## alpha/delta parametrization of a multivariate GH distribution
ghyp.ad(lambda=1, alpha=2.5, delta=1, mu=2:3, Delta=diag(c(1,1)), beta=0:1)
## alpha.bar parametrization of a univariate hyperbolic distribution
hyp(alpha.bar=0.3, mu=1, sigma=0.1, gamma=0)
## lambda/chi parametrization of a univariate hyperbolic distribution
hyp(chi=1, psi=2, mu=1, sigma=0.1, gamma=0)
## alpha/delta parametrization of a univariate hyperbolic distribution
hyp.ad(alpha=0.5, delta=1, mu=0, beta=0)
## alpha.bar parametrization of a univariate NIG distribution
NIG(alpha.bar=0.3, mu=1, sigma=0.1, gamma=0)
## lambda/chi parametrization of a univariate NIG distribution
NIG(chi=1, psi=2, mu=1, sigma=0.1, gamma=0)
## alpha/delta parametrization of a univariate NIG distribution
NIG.ad(alpha=0.5, delta=1, mu=0, beta=0)
## alpha.bar parametrization of a univariate VG distribution
VG(lambda=2, mu=1, sigma=0.1, gamma=0)
## alpha/delta parametrization of a univariate VG distribution
VG.ad(lambda=2, alpha=0.5, mu=0, beta=0)
## alpha.bar parametrization of a univariate t distribution
student.t(nu = 3, mu=1, sigma=0.1, gamma=0)
## alpha/delta parametrization of a univariate t distribution
student.t.ad(lambda=-2, delta=1, mu=0, beta=1)
## Obtain equal results as with the R-core parametrization
## of the t distribution:
nu <- 4
standard.R.chi.psi <- student.t(nu = nu, chi = nu)
standard.R.alpha.bar <- student.t(nu = nu, sigma = sqrt(nu /(nu - 2)))
random.sample <- rnorm(3)
dt(random.sample, nu)
dghyp(random.sample, standard.R.chi.psi) # all implementations yield...
dghyp(random.sample, standard.R.alpha.bar) # ...the same values
random.quantiles <- runif(4)
qt(random.quantiles, nu)
qghyp(random.quantiles, standard.R.chi.psi) # all implementations yield...
qghyp(random.quantiles, standard.R.alpha.bar) # ...the same values
## If nu <= 2 the "alpha.bar" parametrization does not exist, but the
## "chi/psi" parametrization. The case of a Cauchy distribution:
nu <- 1
standard.R.chi.psi <- student.t(nu = nu, chi = nu)
dt(random.sample, nu)
dghyp(random.sample, standard.R.chi.psi) # both give the same result
pt(random.sample, nu)
pghyp(random.sample, standard.R.chi.psi) # both give the same result
Run the code above in your browser using DataLab