Learn R Programming

glamlasso (version 3.0.1)

glamlassoRR: Penalized reduced rank regression in a GLAM

Description

Efficient design matrix free procedure for fitting large scale penalized reduced rank regressions in a 3-dimensional generalized linear array model. To obtain a factorization of the parameter array, the glamlassoRR function performes a block relaxation scheme within the gdpg algorithm, see Lund and Hansen, 2018.

Usage

glamlassoRR(X, 
            Y, 
            Z = NULL,
            family = "gaussian",
            penalty = "lasso",
            intercept = FALSE,
            weights = NULL,
            betainit = NULL,
            alphainit = NULL,
            nlambda = 100,
            lambdaminratio = 1e-04,
            lambda = NULL,
            penaltyfactor = NULL,
            penaltyfactoralpha = NULL,
            reltolinner = 1e-07,
            reltolouter = 1e-04,
            reltolalt = 1e-04,
            maxiter = 15000,
            steps = 1,
            maxiterinner = 3000,
            maxiterouter = 25,
            maxalt = 10,
            btinnermax = 100,
            btoutermax  = 100,
            iwls = "exact",
            nu = 1)

Arguments

X

A list containing the 3 tensor components of the tensor design matrix. These are matrices of sizes \(n_i \times p_i\).

Y

The response values, an array of size \(n_1 \times n_2\times n_3\). For option family = "binomial" this array must contain the proportion of successes and the number of trials is then specified as weights (see below).

Z

The non tensor structrured part of the design matrix. A matrix of size \(n_1 n_2 n_3\times q\). Is set to NULL as default.

family

A string specifying the model family (essentially the response distribution). Possible values are "gaussian", "binomial", "poisson", "gamma".

penalty

A string specifying the penalty. Possible values are "lasso", "scad".

intercept

Logical variable indicating if the model includes an intercept. When intercept = TRUE the first coulmn in the non-tensor design component Z is all 1s. Default is FALSE.

weights

Observation weights, an array of size \(n_1 \times \cdots \times n_d\). For option family = "binomial" this array must contain the number of trials and must be provided.

betainit

A list (length 2) containing the initial parameter values for each of the parameter factors. Default is NULL in which case all parameters are initialized at 0.01.

alphainit

A \(q\times 1\) vector containing the initial parameter values for the non-tensor parameter. Default is NULL in which case all parameters are initialized at 0.

nlambda

The number of lambda values.

lambdaminratio

The smallest value for lambda, given as a fraction of \(\lambda_{max}\); the (data derived) smallest value for which all coefficients are zero.

lambda

The sequence of penalty parameters for the regularization path.

penaltyfactor

A list of length two containing an array of size \(p_1 \times p_2\) and a \(p_3 \times 1\) vector. Multiplied with each element in lambda to allow differential shrinkage on the (tensor) coefficients blocks.

penaltyfactoralpha

A \(q \times 1\) vector multiplied with each element in lambda to allow differential shrinkage on the non-tensor coefficients.

reltolinner

The convergence tolerance for the inner loop

reltolouter

The convergence tolerance for the outer loop.

reltolalt

The convergence tolerance for the alternation loop over the two parameter blocks.

maxiter

The maximum number of inner iterations allowed for each lambda value, when summing over all outer iterations for said lambda.

steps

The number of steps used in the multi-step adaptive lasso algorithm for non-convex penalties. Automatically set to 1 when penalty = "lasso".

maxiterinner

The maximum number of inner iterations allowed for each outer iteration.

maxiterouter

The maximum number of outer iterations allowed for each lambda.

maxalt

The maximum number of alternations over parameter blocks.

btinnermax

Maximum number of backtracking steps allowed in each inner iteration. Default is btinnermax = 100.

btoutermax

Maximum number of backtracking steps allowed in each outer iteration. Default is btoutermax = 100.

iwls

A string indicating whether to use the exact iwls weight matrix or use a tensor structured approximation to it.

nu

A number between 0 and 1 that controls the step size \(\delta\) in the proximal algorithm (inner loop) by scaling the upper bound \(\hat{L}_h\) on the Lipschitz constant \(L_h\) (see Lund et al., 2017). For nu = 1 backtracking never occurs and the proximal step size is always \(\delta = 1 / \hat{L}_h\). For nu = 0 backtracking always occurs and the proximal step size is initially \(\delta = 1\). For 0 < nu < 1 the proximal step size is initially \(\delta = 1/(\nu\hat{L}_h)\) and backtracking is only employed if the objective function does not decrease. A nu close to 0 gives large step sizes and presumably more backtracking in the inner loop. The default is nu = 1 and the option is only used if iwls = "exact".

Value

An object with S3 Class "glamlasso".

spec

A string indicating the model family and the penalty.

coef12

A \(p_1 p_2 \times\) nlambda matrix containing the estimates of the first model coefficient factor (\(\kappa\)) for each lambda-value.

coef3

A \(p_3 \times\) nlambda matrix containing the estimates of the second model coefficient factor (\(\gamma\)) for each lambda-value.

alpha

A \(q \times\) nlambda matrix containing the estimates of the parameters for the non tensor structured part of the model (alpha) for each lambda-value. If intercept = TRUE the first row contains the intercept estimate for each lambda-value.

lambda

A vector containing the sequence of penalty values used in the estimation procedure.

df

The number of nonzero coefficients for each value of lambda.

dimcoef

A vector giving the dimension of the model coefficient array \(\beta\).

dimobs

A vector giving the dimension of the observation (response) array Y.

Iter

A list with 4 items: bt_iter_inner is total number of backtracking steps performed in the inner loop, bt_enter_inner is the number of times the backtracking is initiated in the inner loop, bt_iter_outer is total number of backtracking steps performed in the outer loop, and iter_mat is a nlambda \(\times\) maxiterouter matrix containing the number of inner iterations for each lambda value and each outer iteration and iter is total number of iterations i.e. sum(Iter).

Details

Given the setting from glamlasso we place a reduced rank restriction on the \(p_1\times p_2\times p _3\) parameter array \(B\) given by $$B=(B_{i,j,k})_{i,j,k} = (\gamma_{k}\kappa_{i,j})_{i,j,k}, \ \ \ \gamma_k,\kappa_{i,j}\in \mathcal{R}.$$ The glamlassoRR function solves the PMLE problem by combining a block relaxation scheme with the gdpg algorithm. This scheme alternates between optimizing over the first parameter block \(\kappa=(\kappa_{i,j})_{i,j}\) and the second block \(\gamma=(\gamma_k)_k\) while fixing the second resp. first block.

Note that the individual parameter blocks are only identified up to a multiplicative constant. Also note that the algorithm is sensitive to inital values betainit which can prevent convergence.

References

Lund, A., M. Vincent, and N. R. Hansen (2017). Penalized estimation in large-scale generalized linear array models. Journal of Computational and Graphical Statistics, 26, 3, 709-724. url = https://doi.org/10.1080/10618600.2017.1279548.

Lund, A. and N. R. Hansen (2019). Sparse Network Estimation for Dynamical Spatio-temporal Array Models. Journal of Multivariate Analysis, 174. url = https://doi.org/10.1016/j.jmva.2019.104532.

Examples

Run this code
# NOT RUN {
##size of example 
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 12; p2 <- 6; p3 <- 4

##marginal design matrices (tensor components)
X1 <- matrix(rnorm(n1 * p1), n1, p1) 
X2 <- matrix(rnorm(n2 * p2), n2, p2) 
X3 <- matrix(rnorm(n3 * p3), n3, p3) 
X <- list(X1, X2, X3)
Beta12 <- matrix(rnorm(p1 * p2), p1, p2) * matrix(rbinom(p1 * p2, 1, 0.5), p1, p2)
Beta3 <- matrix(rnorm(p3) * rbinom(p3, 1, 0.5), p3, 1)
Beta <- outer(Beta12, c(Beta3))
Mu <- RH(X3, RH(X2, RH(X1, Beta)))
Y <- array(rnorm(n1 * n2 * n3, Mu), dim = c(n1, n2, n3))  

system.time(fit <- glamlassoRR(X, Y))

modelno  <- length(fit$lambda)
oldmfrow <- par()$mfrow
par(mfrow = c(1, 3))
plot(c(Beta), type = "h")
points(c(Beta))
lines(c(outer(fit$coef12[, modelno], c(fit$coef3[, modelno]))), col = "red", type = "h")
plot(c(Beta12), ylim = range(Beta12, fit$coef12[, modelno]), type = "h")
points(c(Beta12))
lines(fit$coef12[, modelno], col = "red", type = "h")
plot(c(Beta3), ylim = range(Beta3, fit$coef3[, modelno]), type = "h")
points(c(Beta3))
lines(fit$coef3[, modelno], col = "red", type = "h")
par(mfrow = oldmfrow)

###with non tensor design component Z
q <- 5
alpha <- matrix(rnorm(q)) * rbinom(q, 1, 0.5)
Z <- matrix(rnorm(n1 * n2 * n3 * q), n1 * n2 * n3, q) 
Y <- array(rnorm(n1 * n2 * n3, Mu + array(Z %*% alpha, c(n1, n2, n3))), c(n1, n2, n3))
system.time(fit <- glamlassoRR(X, Y, Z))

modelno <- length(fit$lambda)
oldmfrow <- par()$mfrow
par(mfrow = c(2, 2))
plot(c(Beta), type = "h")
points(c(Beta))
lines(c(outer(fit$coef12[, modelno], c(fit$coef3[, modelno]))), col = "red", type = "h")
plot(c(Beta12), ylim = range(Beta12,fit$coef12[, modelno]), type = "h")
points(c(Beta12))
lines(fit$coef12[, modelno], col = "red", type = "h")
plot(c(Beta3), ylim = range(Beta3, fit$coef3[, modelno]), type = "h")
points(c(Beta3))
lines(fit$coef3[, modelno], col = "red", type = "h")
plot(c(alpha), ylim = range(alpha, fit$alpha[, modelno]), type = "h")
points(c(alpha))
lines(fit$alpha[, modelno], col = "red", type = "h")
par(mfrow = oldmfrow)

################ poisson example
set.seed(7954) ## for this seed the algorithm fails to converge for default initial values!!
set.seed(42)
##size of example 
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 12; p2 <- 6; p3 <- 4

##marginal design matrices (tensor components)
X1 <- matrix(rnorm(n1 * p1), n1, p1) 
X2 <- matrix(rnorm(n2 * p2), n2, p2) 
X3 <- matrix(rnorm(n3 * p3), n3, p3) 
X <- list(X1, X2, X3)

Beta12 <- matrix(rnorm(p1 * p2, 0, 0.5) * rbinom(p1 * p2, 1, 0.1), p1, p2) 
Beta3 <-  matrix(rnorm(p3, 0, 0.5) * rbinom(p3, 1, 0.5), p3, 1)
Beta <- outer(Beta12, c(Beta3))
Mu <- RH(X3, RH(X2, RH(X1, Beta)))
Y <- array(rpois(n1 * n2 * n3, exp(Mu)), dim = c(n1, n2, n3))
system.time(fit <- glamlassoRR(X, Y ,family = "poisson"))
modelno <- length(fit$lambda)
oldmfrow <- par()$mfrow
par(mfrow = c(1, 3))
plot(c(Beta), type = "h")
points(c(Beta))
lines(c(outer(fit$coef12[, modelno], c(fit$coef3[, modelno]))), col = "red", type = "h")
plot(c(Beta12), ylim = range(Beta12, fit$coef12[, modelno]), type = "h")
points(c(Beta12))
lines(fit$coef12[, modelno], col = "red", type = "h")
plot(c(Beta3), ylim = range(Beta3, fit$coef3[, modelno]), type = "h")
points(c(Beta3))
lines(fit$coef3[, modelno], col = "red", type = "h")
par(mfrow = oldmfrow)
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab