
Given an array containing simulations from the posterior of a precision matrix, each individual precision matrix is converted to variances, covariances, and correlations.
cholInvArray(x, prefix = "T", chol=FALSE)
An array of winbugs output, with precision matrix entries of the form "T[1,3]"
The name of the precision matrix in winbugs, the "T" in "T[1,2 ]"
If TRUE, the cholesky decomposition is returned instead of the inverse
An array with the third dimension's precision matrix entries changed to
for the standard deviation of component i
for the covariance between i and j
for the correlations between i and j
Inverts the matrices with the cholesky decomposition, but operating on all matrices simultaneously using array arithmetic.
# NOT RUN {
# create a random positive definite matrix by
# generating a lower triangle
N=4
lmat = diag(runif(N, 1, 10))
thetri = lower.tri(lmat)
lmat[thetri] = rnorm(sum(thetri), 0, 2)
# precmat = solve(lmat %*% t(lmat))
precmat = solve(lmat %*% t(lmat))
# put this matrix into an array
precarray = array(c(precmat), dim=c(1,1,length(precmat)))
dimnames(precarray) = list(NULL, NULL,
paste("T[", rep(1:N, N), ",", rep(1:N, rep(N,N)), "]",sep="") )
# invert it with cholInvArray and the solve function
cholInvArray(precarray)[1,1,]
# the off diagonals of solve(precmat) should be
# the covT elements of cholInvArray(precarray)
solve(precmat)
# the standard deviations in cholInvArray(precarray) should be the
# root of the diagonals of solve(precmat)
sqrt(diag(solve(precmat)))
# }
Run the code above in your browser using DataLab