
transform correlation parameters to and from glmmTMB parameterization
get_cor(theta, return_val = c("vec", "mat"))put_cor(C, input_val = c("mat", "vec"))
a vector of correlation values (get_cor
) or glmmTMB scaled-correlation parameters (put_cor
)
vector of internal correlation parameters (elements of scaled Cholesky factor, in row-major order)
return a vector of correlation values from the lower triangle ("vec"), or the full correlation matrix ("mat")?
a correlation matrix
input a vector of correlation values from the lower triangle ("vec"), or the full correlation matrix ("mat")?
get_cor
transforms from the glmmTMB parameterization (components of a theta
parameter vector) to correlations;
put_cor
does the inverse transformations, from correlations to theta
values.
These functions follow the definition at http://kaskr.github.io/adcomp/classdensity_1_1UNSTRUCTURED__CORR__t.html:
if get_cor
function returns the elements of the lower triangle of the correlation matrix, in column-major order.
These functions also work for AR1 correlation parameters.
th0 <- 0.5
stopifnot(all.equal(get_cor(th0), th0/sqrt(1+th0^2)))
set.seed(101)
## pick 6 values for a random 4x4 correlation matrix
print(C <- get_cor(rnorm(6), return_val = "mat"), digits = 3)
## transform a correlation matrix to a theta vector
cor_mat <- matrix(c(1,0.3,0.1,
0.3,1,0.2,
0.1,0.2,1), ncol = 3)
put_cor(cor_mat, "mat")
put_cor(cor_mat[lower.tri(cor_mat)], "vec")
## test: round-trip
stopifnot(all.equal(get_cor(put_cor(C), return_val = "mat"), C))
Run the code above in your browser using DataLab