## use Salamanders data for observational design and covariate values
## parameters used here are sensible, but do not fit the original data
params <- list(beta = c(2, 1),
betazi = c(-0.5, 0.5), ## logit-linear model for zi
betadisp = log(2), ## log(NB dispersion)
theta = log(1)) ## log(among-site SD)
sim_count <- simulate_new(~ mined + (1|site),
newdata = Salamanders,
zi = ~ mined,
family = nbinom2,
seed = 101,
newparams = params
)
## simulate_new with return="sim" always returns a list of response vectors
Salamanders$sim_count <- sim_count[[1]]
summary(glmmTMB(sim_count ~ mined + (1|site), data=Salamanders, ziformula=~mined, family=nbinom2))
## return a glmmTMB object
sim_obj <- simulate_new(~ mined + (1|site),
return_val = "object",
newdata = Salamanders,
zi = ~ mined,
family = nbinom2,
newparams = params)
## simulate Gaussian data, multivariate random effect
data("sleepstudy", package = "lme4")
sim_obj <- simulate_new(~ 1 + (1|Subject) + ar1(0 + factor(Days)|Subject),
return_val = "pars",
newdata = sleepstudy,
family = gaussian,
newparams = list(beta = c(280, 1),
betad = log(2), ## log(residual std err)
theta = c(log(2), ## log(SD(subject))
log(2), ## log(SD(slope))
## AR1 correlation = 0.2
put_cor(0.2, input_val = "vec"))
)
)
Run the code above in your browser using DataLab