if (requireNamespace("lme4")) {
if (FALSE) {
fm1 <- glmmTMB(count~mined+(1|spp),
ziformula=~mined,
data=Salamanders,
family=nbinom1)
## single parametric bootstrap step: refit with data simulated from original model
fm1R <- refit(fm1, simulate(fm1)[[1]])
## the bootMer function from lme4 provides a wrapper for doing multiple refits
## with a specified summary function
b1 <- lme4::bootMer(fm1, FUN=function(x) fixef(x)$zi, nsim=20, .progress="txt")
if (requireNamespace("boot")) {
boot.ci(b1,type="perc")
}
## can run in parallel: may need to set up cluster explicitly,
## use clusterEvalQ() to load packages on workers
if (requireNamespace("parallel")) {
cl <- parallel::makeCluster(2)
parallel::clusterEvalQ(cl, library("lme4"))
parallel::clusterEvalQ(cl, library("glmmTMB"))
b2 <- lme4::bootMer(fm1, FUN = function(x) fixef(x)$cond,
nsim = 10, ncpus = 2, cl = cl, parallel = "snow")
}
}
}
Run the code above in your browser using DataLab