Learn R Programming

glmnet (version 2.0-10)

glmnet-package: Elastic net model paths for some generalized linear models

Description

This package fits lasso and elastic-net model paths for regression, logistic and multinomial regression using coordinate descent. The algorithm is extremely fast, and exploits sparsity in the input x matrix where it exists. A variety of predictions can be made from the fitted models.

Arguments

Details

Package: glmnet
Type: Package
Version: 1.0
Date: 2008-05-14
License: What license is it under?

Very simple to use. Accepts x,y data for regression models, and produces the regularization path over a grid of values for the tuning parameter lambda. Only 5 functions: glmnet predict.glmnet plot.glmnet print.glmnet coef.glmnet

References

Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Models via Coordinate Descent, http://www.stanford.edu/~hastie/Papers/glmnet.pdf Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010 http://www.jstatsoft.org/v33/i01/ Simon, N., Friedman, J., Hastie, T., Tibshirani, R. (2011) Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol. 39(5) 1-13 http://www.jstatsoft.org/v39/i05/ Tibshirani, Robert., Bien, J., Friedman, J.,Hastie, T.,Simon, N.,Taylor, J. and Tibshirani, Ryan. (2012) Strong Rules for Discarding Predictors in Lasso-type Problems, JRSSB, vol 74, http://www-stat.stanford.edu/~tibs/ftp/strong.pdf Stanford Statistics Technical Report Glmnet Vignette http://www.stanford.edu/~hastie/glmnet/glmnet_alpha.html

Examples

Run this code
# NOT RUN {
x=matrix(rnorm(100*20),100,20)
y=rnorm(100)
g2=sample(1:2,100,replace=TRUE)
g4=sample(1:4,100,replace=TRUE)
fit1=glmnet(x,y)
predict(fit1,newx=x[1:5,],s=c(0.01,0.005))
predict(fit1,type="coef")
plot(fit1,xvar="lambda")
fit2=glmnet(x,g2,family="binomial")
predict(fit2,type="response",newx=x[2:5,])
predict(fit2,type="nonzero")
fit3=glmnet(x,g4,family="multinomial")
predict(fit3,newx=x[1:3,],type="response",s=0.01)
# }

Run the code above in your browser using DataLab